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An Update On
STRATEGIC COMPUTING COMPUTER VISION

Robert L. Simpson, Jr., Ph.D.
Lieutenant Colonel. USAF
Program Manager for Machine Intelligence
Defense Advanced Research Projects Agency
Information Science and Technology Office
Arlington, VA 22209-2308

ABSTRACT

since 1983, [ have had the privilege of managing the DARPA Strategic Computing Computer \'ision
Technowogy Base, which 1s a sizable subset of the overall DARPA Image Understanding Program. After
four vears of very significant acuvity by this DARPA sponsored computer vision community conducting its
re~carch under the auspices ot the Strategic Computing (SC) Program. [ wish to take this opportunity to
relate from a elobal perspective some of these activities and accomplishments of this criticailv imporiant
nauonal research program. This paper is not going to present technical details: those can be zathered from
the other papers in thus volume. My purpose is 1o present some insight into the goals, structure. 2nd
relationships among the various projects sponsored under SC. While [ believe vou will agree that much has
h~oen nooomrahished. there 15 much more research and development needed before the ulumate voai ot SC
Computer Vision research is realized.

INTRODUCTION

e uiumate voal of SC computer vision research (SCVision) is to develop Knowledge-bhased technoion
that il enable the construction of complete. robust, high performance 1image understanding swstems 10
~upport a wide ranve of DoD applications. These applications include autonomous vehicie navication,
rhotonterpretauion. smart weapons, manufacturing. and robotc manipuiation. One ot the featurea areas
o research in computer vision has been autonomous ground vehicles. since miluary vehicles freguenti
rertorm dangerous or labor-intensive tasks and in manv cases, the capabilives required for 4 rokouc
vehicie appear to be within reach of a concerted research effort in robot vision. computer architectures.,
and machine planning technologies. The SCVision program is aimed at extendine the state—ot-the-art ~o
that robouc systems will be able to perform such tasks. In addiuon. this domain 1s approprate tor
chailenwing image understanding technology because it focuses on critical component vision tecnnoiogies
that are mmportant to all of the relevant application areas in SC. For exampie. the navigation task tor a
cround vehicle requires the representation and understanding of complex dvnamic scenes containing
nawral and man-made objects, and the development and use of new computer parallel architectures with
new programming techniques to meet demanding real-time computational needs. These same 1scues are
cermane to photomnterpretation. manutacturing, and smart weapons, where real-time computing 1ssues are
parucularly crincal in this last application. A significant part of the technological results are also beine
exrioited in other DoD programs requiring simifar model-based recogmuon and classificauon probiems
Twwo such provrams are the Advanced Digital Radar Imagery Explonauon Svstem (ADRIES wno the
strategic Computing Obtect-Directed Reconnaissance Parallel-Processing Imave Understandine Sivstem
tSCORPIUSY.

The SCVision program has focused on three types of demonstration scendarios tor vision-guided oot
vetncies: road tollowing. cross-country navigation. and the unificaton of these Hrst Lwo sCenarios nio
sngle systermn to accomphish specific mission goals. Significant accomphishments have heen demonstrated
tor the bDasic two scenanos, and current research ic targeted at an inteerated svstem. In reac tollowing
~cenanos, a vehicle drives down a stretch ot paved or unpaved road. Research nas dealt wnh ne
compiexity of outdoor illumination and shadows, recogniton of ground teatures such as road tounaanes,
and the avoldance of obstacles using 3-dimensional sensor data. Road following provides o weli-detined
taskowith clearly detined teatures of interest. <o that basic capabilities tor vision and momiity can e
developed. Road tollowine demonstrations have achieved the fastest vehicle speeds, the longest distances.
and have had the greatest number of experiments pertormed to date.

I the successtul demonstratton ol the cross—country pavigaton scenario. Jutonomous vehicies nave reen
ariven across natural terrain under suidance ot 3-D sensors, particularly the iaser range ccanner. In these
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demonstranons, the goal point was not visible from the starung vehicle location. The research required
unifving the technology for map-based reasoning with sensor-based planning techmques. The SCVision
etfort was aimed at classifying terrain as traversable or non-traversable using a 3-dimensional vehicle
madel. building a representation for observations of extended obstacles including slopes, ditches, and
rock outcrops. and moving the vehicle safelv and efficiently along an automaucally planned path. The
cross country expeniments have successfully driven robots vehicles in complex terrain and difficuit
navigational environments.

Finailv, an integrated scenario will require both on-road and off-road navigation capability as well as
abject recognition for landmarks and targets of interest. In an integrated svstem, the robot vehicle wouid
e assigned a complex. multi-step mission and the vehicle itself would decide which navigauon and
perception modes were appropriate {for each step of the task. An example mission that an inteerated
svstem mught carry out is the "overwatch” reconnaissance mission in which the vehicle must navigate 1o a
vantage point overlooking a strategically imporant tocation, posiion the vehicle to properiv direct its
sensors at the locauion. monitor targets appearing at the locaton, report on the target movement as
specified by mission constraints, and finallv return to its base of operations. Research for buiidire
integrated svstems s needed for object and event recopmition, dyvnamically interpreting percened
mtormation o sausfy mission constranis. mamtaming consistency with map-based knowledye. buiiding
Hewble software system architectures, and incorporatiny high—<peed computing hardware. In addition
develeping indiodual component technoloyres. the SCVision program includes & new generauion wwstem
INGS) that will be such an integrated system.

To achieve the goals of all these scenarios. SCVision research addresses four criticat sreas n
xnowledee-based image understanding: visual modeling and recognition, dvnamic scene motion anaivsis,
viston-hased obstacle avoidance and path pianming, and parallel implementauon 1ssues. In additon. the
NGS effort tocuses on svstem mntegration problems. The voal of visual modehng 15 to develop etfective and
ctiictent techmques for descnibing, storing. and accessine the knowledge necessary tor nawrai and
man-made object interpretauon. Natural objects 1such as rocks. bushes, and ravines) and cuitural ohects
(~uch as buldings and fencest must be modeled in such a wayv that their charactenistics can he provided o
effecuve recogmbion modules that locate occurrences of them in sensed data. Dvnamic scene mouon
anaivsisnterprets a sequence of images to determine the shape and locauon of obiects and to detec: znd
track movine objects. Viston-based obstacle avordance and path plannine research explores techniques o
nlan and follow routes. locate and follow roads. and detect and avoid obstacles on the basws o1 i
input. The research in paralle! vision algorithms aims at developine vision programming environmenis lor
parallel computer architectures and implemenung vision algornthms on them. so that the sensory anansis
task 1s performed 1n real time. The system integration work 1§ needed to develop svstem architeciures that
coordinate the acuwvities of muluple sensor and reasoning systems to perform complex tasks. In addion,
the NGS s being developed as a focus for integrauny and tesung research results. The purpose ot the NGS
research 15 10 ensure that complex svstem issues are bemng addressed. to  faciliate appropriate
Jdemonstrauons and evaluauons. and o achieve accelerated transter of techinology to cpplicatons.

SCVision. whose emphasis 1> on knowledge-based approaches to machine percepuon. v aimed at
appheation tasks that cannot be successtully addressed with simple image matching and staustical anansis.
Far this reason. SCVision research is explicitly avolding invesueations that are based on stausucal i
matching., which has been the subject of extensive resedarch over the past thirty vears. In sdditon.
SCVision s exphentiy avording research whose predominant voal s the modehne or simulaton of boinecal
suostems. SCNon also emphasizes the svstems aspect of viston -- inteerating viston with other A1 ano
control modules ina real-nme system. and mvesueatng state-of-the-art hardware arcineciures ooy
~oltware svstems 1o make practcal use of new hardware inontegrated svstems,

ACCOMPLISHNMENTS

itiern

The SCNIsion provram has bulit on results from the first phase of research to achieve accompusimernis o
cach ares o the maior techmcal problem areas. The accomphshments are described beiow

NEW GENERATION SYSTENM

An mual implementaton and demonstration of the NGs has been compieted at ONMEU L T s tasew oy
Nhackboard architecture.  anth specralized  data representatons  and  access methods o supyon
three-dimenstonal spatial reasomne. The NOS runs on the NAVLEAB, o commercial van comerted into g
computer—-controlled  robot vemcle. The  NAVLEAB incorporates ¢ mult -processor compatny
COUVITONMEe Nt Consising of penerai—purpose compiters 15U N3 as well s o WARDP paraliel maonme The




applicauon soitware includes a number of vision modules capable of detecting and following roads and
detecung and avoiding obstacles, using algorithms developed in the SCVision program. Percepuon
modules handle sun. shade, and mixed illumination; modules using a laser rangefinder have even driven
the NAVLAB at night. Using the WARP, the NAVLAB has been driven at | meter per second. The NGS
allows road-following and obstacie-avoidance to be combined into a single system. Research during the
past vear integrated capabilities for cross—-country travel. and for building maps and retraversing terrain
with less percer 'n and higher speeds. The new CORE svstem will integrate perception, planning, and
path execuuon - .0 a single framework Data collected by the NAVLAB has been distributed to other
SCVision sites, and several components of the NGS have been transferred to the ALV project at Marun
Marieua in Denver and have been used to drive the AL\

VISUAL MODELING AND RECOGNITION

Substanual progress has been made within the SCVision community for the basic techniques for visual
modeling and recognition. SRI has completed an initial implementatuon of the Core Knowledge System
(CKS) for vision systems to allow cooperative interactions among sensors, interpreters, controllers and
user interfaces. The CKS, together with new techniques developed at SRI for recovering scene geometry
and object idenuty from a sequence of images. proviaes a basis for understanding both the semanucs and
geometry of the environment being traversed by a moving robouc device. Using the superquadric model.
UPenn has developed a parameter fitting algonithm o extract surface descripuons from clusters ot 3D
points from the laser range scanner. Surface parameters include positinn. orientauon, scale. planar or
guadrauc surface measures, and two deformation parameters (tapering and bending along the major axisi.
Stanford has developed general methods for spectral modeling of objects based on analvsis of hinear
projections of muiuspectral, optical images. ADS also developed an architecture for object modeling anc
recognition for autonomous land vehicles. Models of objects such as terrain features. honzon features.
poles, trees and bushes have been developed at both ADS and Stanford. GE has demonstrated
model-directed object recognition using vertex-pairs as maiching teatures hbetween model and scene. The
alvorithm was implemented on the Connection Machine and demonstrated for airplanes and automobifes
An extensive <et ot algorithms have been developed for recoenizing roads and intersections by CMU and
Maryland. These algorithms are based on modeling rcads in terms of their speciral and geometric
properties. and use both opucal and range informauon. 3D range data analvsis techniques have neen
advanced st CMU, Huehes. and SRI for recognizing terrain features and man-made objects. The
University ot Pennsvlvama has deveioped techniques to use superquadrics for represenung and
recognizing fandmarks and objects. Hughes has developed techniques to seement color imacery for tie
recoeniuon ot natural terrain objects.

DYNAMIC SCENE AND MOTION ANALYSIS

The Unniversity of Southern California has implemented techniques for robustly esuimaung >D mouon
parameters and computng 3D mouon trajectories ol moving objects given features eviracted trom 2D
‘mave sequences. The theory has been de.eioped for imape sequences involving acceleraton and
deceierauon. Relauve structure and depth information 1s a by product of motion parameter esumauon. To
cupport this work, USC has developed line— and region-based feature extracuon and matching techniques
for detecune moving objects In Motion swgquences.

Honevwell has developed qualitative reasoming and "3-1."2-D7 modeling techniques for detecuny and
tracking moving targets from a mobile platform in simple curved road scenes. The concept of tuzzv focus
ot expansion. which allows a very accurate determinaton of the instantaneous direction ol a moving
vehicle and camera rotations along the two axes tpan and ult oniv). has heen demonstrated. Honevwedl
Ras alko demonstrated the "dvnamic model matching” concept for landmark recogniuon. where the
model zeneration and matching process dvnamicaily chanees as a tuncuon ot ranee to the landmark and
serscective as viewed by a mobile plattorm. In addiion, they have performed intual expenments in digital
mayp inteeraied farcet tracking.

Iho Draveratn o0 NMassachusetts has eoilected a set of mouon sequences trom the Marun Marnetta ALV
shect contain crnd truth imformauorn irom the vebacle’s fand navication svstem. as owell o+ a
caitucrapie surtey ob the environment: these <equences will be made availlable 1o the SC\Viaion
commyumt o adow ~crenufic evaluaton of mouon aleonithms. UMass aiso has devetoped a2 promising
alcorinm o Jerth computation from imave sequences vene opuc How tields to track ~straght hines.

Hocties s implemented a technique developed by MIT to recover vehicle mouon twith 6 desrees of
frecanm: nelieen two locations using information trom laser range scans. This has ailowed Hughes to
Connirie tnpourapincal terrain maps trom cerced data collected dunine cross country experniments on the
\
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OBSTACLE DETECTION AND AVOIDANCE

The SCVision community has developed and demonstrated a series of algorithms for detectine obstacles.
The first algorithms developed for obstacle detection were fast, but could onlv be used for tlat roads -~
crowned or banked roads, or cross—country terrain, could not be handled by such simpie approaciies. The
SCV\ision community has continued to develop and demonstrate a senies ol algorithms for detecung
obstacles. Algonthms for complex conditions. crowned or banked roads, or cross-countrv terrain. have
been developed at Marviand. using derivauves of range; at Hughes, by interpretung an elevation map with
a three dimensional vehicle model; and at CMU, tuung muluple planes with descriptors for surtace
roughness and slope. At the University of Pennsylvania. research has emphasized acuve viston techniques
and a control schema of penipheral and foveal imaging has been completed. The CMU algorithms have
successfullv driven vehicles through obstacles, both on and off road. The Hugnes wwstem was used in
several cross country experiments with the ALV in December [Y87. successtully avoicing obstacles suci
as trees, rocks. steep slopes. and gullies with paths of approximateiv 700 meters. This demonstration
represented the inteeration of map and sensor-based operauon of a robotic vehicle in natural terrain usane
nphtly coupled vision and planning svstems. It is significant that with this demonstrauon the DARP A cross
country teennoiogy miiestone was achieved approximately one vear ahead of ~schiedule UPenn recearen
has recenved considerabie tecognition for their wavelet decomposinon ol visual signaes and the e ol
superquadrics for share descnptions s being evaluated by the post oftice tor use n separauns rreey.ar

parcels on the assemibhy hine.

PARALLEL COMPUTING ENVIRONMENTS FOR VISION

Manmy software toois and aleorithms have been implemented on the ditferent parallel arciitecrres. Warp,
The Connecuon Macnine, and Butterflv. A siemficant body of experience has been camec
impiementing vision aicorthms on parallel computers. Now that the hardware has been dnadable 1o ~ome
ame. resedarch has feosssed on software programming environments for parailel visilon Carnesie - Medion
has impremented the Appiy language, which allows the <ame low-level vicion program o se run eicientae
anowovariet of parailel arohiutectures. Apply currently generates efficient code tor Warp anc sun. s wln
as cther sersions of Warp and other parailel architectures. Development ot Apphv 2as cone oo
directions: mappine Appis onto new parallel architectures, and extending Appis '~ tuncuenaiiy on essting
arciotectures. particuiariy Warp, MIT had concentrated i using the Connecuon NMachinne woonrere
narallel modeis 0! computaton and for developimg a vision system for unconsiramed emvcrenments -- the
Visen Machine MIT demonstrated for the first tme the whole Vision Machine sveatem aorsens trom
images o recovmuon throneh mtegraton of other cues. Some of those algorthms run in close o reas tme.
cdee detection. moton computation. stereo. surface mnterpolaton. fuston ol severdi ~sources sl i,
ntormation hased on Markov Random Field models, and model-based recosmuon. Marcana Bas
destened o pyramid mmave processing system with both tat and redundant pyvramids and impemernied
mans alvontthms on the Connection Machine. Rochester has demonstrated SIND-fike procrams on e
BB\ Buttertly Paratiel Processor that show linear paraliel speedup. Rochester has implemernivd e
routnes trom the [FF mmave processing library on the Butterfly using the Unitorm Syvstem. distnthutea
BBN and mmproved locailyv. Columbia has also built an image processing envirenment that optmails
embeds tree and prramid architectures in the Connecuon Machine. Columbia has develorea and
demonstrated new aiponithms for surtace shape recovery from textural cues. and 4 svstem for opumaih
recovering surtace propertes [rom sparse stereo or range data.

TECHNOLOGY TRANSFER

Several of the mportany components developed under SCVision have been transterred o cppucatons
For the ALV project. modules from CMU and Marvland have been mcorporated mto the NMarun
Maretta svstem. wnd complete ssstems from Hughes and CMU have drniven the ALY on roads and (7oss
country In parncaiar, Gie NGS archrtecture (hardware and software) 1< now been duphcated on the ALV
racittatine transter ot compliete modules. NGS technology s also bemng used it the desien ol o NMars Rover
A 0 stindies o cnderaater autonomous vehicles. Several sites are usine SOV ision paraie. sion
<ottware Connecuon Macnine. Warp, and Buttertly software have been exporicd 1o Dol prosecs suchoas
ADRIES and SCORPIU S, and as far as the European Community’s ECRC

PROJECT SUMMARIES
NEW GENERATION VISION SYSTEM (ML)

The New Generauen Viwion System. beiny developed by CMU LD s anintegrated vision sastem rased on U
Blackoard archiectizre and corsnmne vision modules developed at CNU basea on the wors of CN




and other SCVison contractors. Current capabiliues of the NGS include road following, simple obstacle
vordance, and cross—country driving. The blackboard provides communicauons and coordination
hetween sensine and reasoniny modules. The testbed for this svstem the CMU NAVLAB. a commercial
ruck comerted mtooo robor vehicle. The NAVLAB contains several general-purpose computer
workstations on boare s well as a WARP parallel architecture computer: sensors include color TV
cammeras and an ERIM Laser ranzetinder. Researchers on the NAVLAB can monitor the execution of the
svaletmoas it s runmne, which has been invaluable in speeding up research progress and acquining data tor

dstmbunion tooad the SOV on sites. The NGS software runs on standard UNIX, which faciitates program
Jevelopmrent and tesune. ana tie WARP cottware includes tully integrated programmung tools and a vision
' cer 2oronmes. fhe svstem evolves over ume as new modules are integrated and as the

cnd sottware environments evolve. In parucular, to consolidate the research progress of the
Ldate. the NCORN CLre Navization Svstem s being developed to integrate the most successiul
vershons L Loranve dataoterpretation, cross—country path ptanning (hased on work done at
cice control ACORN wiil provide a self-contained software plattorm tor the NGS so that
rescuren cen e undertaken without the need to constantly redefine the basic vehicie

i otadihtios Maror achievements are: the CODGER blackboard for mobile robor
8 L s brelnie ardhitecture for conunuous perception and mouon controll fast visien
s N e e ce W D i cuaee, collowiny g road at | meter S second: road following using aoine

oo T ot oo Cavarsra marping 2D teatures and reusing the map to purde fater runs: bundine

SR { Croonoss countny traverse and planming ralectories based on the map<. vehiow

~ . cope and acuon Maor midestones include: using exphat modeis of road imes.

': rooooainer ceanzes wodrive on highwavs (1980 baildine an ntecrated 1o

b K PN e Compieton of the ACORN Core Navization Svstern 109000 N i
soasirend maps and apdatng accumuiated map ntormaton 1YYl

VISUAT MODELING AND RECOGNITION (SR1, ADS Stanford. GE»

Nooeroet wiin enelomnge redhmanes tor automatcaly budding a orepresentauion

nattiral terram populated with obrects such as roads, Pridves, st
sy ensors and previoush stored knowiedee. The maror tisas are
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Moo mree s nowenal Dedeieny researcnondhiude tne deveiopment ol sotiiare Dadhaeses s il o Hie
~oarern cORs oy SRE G thie svsten

NS novusterns, cuch os the Pace sostem v General Biectnie and the Tran

~RET cvoavaitabie tooother croups U aciitate ther research and cevcrmens

T T shuch procades Poth spatidn and somianiic acless 1o oAy enviroenmers
o cone Pace sostem bee developed at General Elearrio’s e
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environments (o support research in mage understanding. This includes the POWERVISION image
understanding environment developed on a SYMBOLICS LISP Machine and extensions for i 1o run
under generic Commonlbisp on SUNS and MAC lls.

The TraX svstem. which i1s being developed at SRI, builds models of objects that evolve over ume as
addinonal data are obtained from a sensor mounted on a moving vehicie. The system uses mnerual
navigauon data to help track objects from image to image. It then builds descriptions of the objects and
evaiuates the stability of these descriptions over ume. Since the appearance of an object can chanee
<entficantly as the vehicle approaches it a lattice of representations s provided that controls the evolunion
o1 an obrect’s description rom a crude blob to a complete semantic model, such as bush. rock. and tree.
One o these descriptions is associated with an object only after the object has been detected and
Jdeserired muluple tumes and the parameters of description ure stable. Stability is defined in a stausucal
<ense augmented with a set of explanauons describing reasons for missing an object or having parameters
chanee. These explanatons can invoke many tvpes of knowledge, including the physics of the sensor. the
rertormance of the segmentauon procedure. and the reliability of the matching technique.

B. the end ot FYNU these representauon svstems will torm a fully funcuonal core for a recoeniuen and
navraton setem. In FYO90 and 91 plans are 1o extend the generaluy of these techniques so that thev can

beoaopiied o a wide range of viston problems. including autonomous navigauon for weapon systems.

serverliance. and robotc manipuiatuon and inspecuon.
DYNAMIC SCENE AND MOTION ANALYSIS (UMass. USC. Honeywell)

Sosoetters s ammed at the ubhzavon of intormaton from a sequence of image frames obtainee from
criser undergome arbitrary mouon. Major goais are:

® roConery of the MOUON parameters of the sensor:

@ reconert af the mouon parameters ol independentiv moving objects in the field o1 vrew.

o recovery o the depth of environmental objects and pomnts: and

e ecranan of mouon and depth informaton with environmental models in vehicular mavcanon

AARNG4N

monen Cledris plavs anamporiant role in vsion, wremams one of the more difficul ana Chaen o
sreas o espenmental vision research.

The [ranversitv o Southern Caltornia has developed techmgues for robustdy esumaune 21 monorn
caremeters and computing 3D mouon trajectories of moving oblects given features extracied rom 2D
i ~eguences  These technmiques have been mmplemented 11 a working syvstem for consiant moaorn
aivo altow recovery of depth mtormauon and relauve structure. To support thes work. UasC s
cerelred dine hased and regon hased feature extracuon and matchine techmques for deecune monine
reecs ono omouon sequences. In addinon. USC has developed o techmique tor the ananss
Cooseno=spaced image sequences that makes explicit use of occlusions and works tor arbitrary observer

Pic U molions.

sones tor USC work an 1986 gre mntectaton of teature extraction and matenine st

Corstant and o ameie acceleration mouons. Loneer term poals are anterence  of sinadiure oo
Sratio-temporal datd. merging scene desenptions o elobal desenipuions (such as these needed
wwance swstem). parallel umplementations of mouton alporithms and transfer o1 ceennone e

o resects in academua. industry and Crovernment

el aen Doy Jdeveloped qualitative reasomne and T3-1 2-D7 omodelny technigues tor e
cot o ano raokene trom a moviny piattormon simpie cunved road scenes: has demonstrated
Creoes o anstanzaneots heading of g ovehacle (7 Rizzy Focus of BxpansionT o can beooens g
SeoTee D auCHTacs NN mmace intormation exclusieehs has shown that rotations an e Loniconta, wid
corectonis ot plusiminus tve devrees or arver can e tolerated by the Fozzy TOE Giconum.
v e dvnanmie model matchinge concept tor landnark recocmiion from g omoevne platiore
Honewaen has done anal experiments an WJdiontal map inteerated tareet racsiny

Do rmecscts are cevelopime techmiaties ter robust detectien, trackine. and recoumion ol sationan an
oL HITNRS . ds well o e eth and locatuon ol environmenoan OPeCIs 1o soene o
coration and Obstacie @ oldance [he mmaves s e cenerated brom erther g -ationary ot
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moving vehicle. The motion parameters of the vehicle will be recovered passively by analvzing image
mouion of pomnts and features across a sequence of images. This 15 necessarv in order 1o recover
three-dimensional inforinaton about environmental depth and moving objects.

Results from mouon analvsis will provide sensor and object motion parameters and depth data for
subsequent knowledee-based processing. The dvnamic event perception achieved using this knowledge
wili be usetul for vision controlled navigation/guidance of a vehicle. as well as surveillance and other
subsequent apphications of military relevance. The software being developed will be kept compauole with
the CMU blackboard systems so that there 1s a natural integrauon mechanmism. iniually, the motion
analvsis has focused on images from the moving vehicle 1n road scenes with static obstacles and moving
objects (such as another vehicle). Later, techniques will be considered for dealing with complex scenes
invaolvine a wider variety of scenarnios including off-road stavonary and moving objects.

Major milestones are: mn 1989 detection and recovery of motion of several moving objects 1n more
complex scenes and integrated motion cues for recognition and tracking: in 1990 digital map integrated
mouon detecuon and tracking under high clutter and maneuvening situations: and in 1991 demonstration
ob idenutving military sigmiticant events in more complex scenes by combining perceptual cues, reasoniny
and expectatons, and spatial and temporal analvsis of dvnamically chanuing scenes viewed from moving
SISO,

Usinig the Muarun NMarntetta ALY, UMass has collected several moton sequences with accurate pround
truth using both <top-and-shoot and move-and-shoot scenanos for image capture. In order to support
Juanutative expermments in mouon analvsis, the ALV's fand navigation svstem was used to obtain sensor
moetion parameters. In addidon, the location of key environmental objects and feawures appearing in the
~Cenes were optained by means of a careful cartographic surveyv.

Preblems with respect 1o the extraction of mouon and dectn informauon using tradinonal orucai flow
‘wchntgiies bave led us toward the exploranon of methods fer combiming the local flowsdisplacement neids
Lith larcer token-hke structures. To provide a more robust esumate of mouon and depth parameters.
Swethods tor compuung the temporal correspondence hetween straight hne <egments and the changes in
e lengths between vrwaal ntersections were developed and tested on several motion sequences.
Frpermental resuits were obtaimed of less than 3% error :n depth for objects at a distance ot 20 1o ~o
Tl

Crcals tor [YsY mvorve demonstration of the recovery ot environmental depth by tracking <traight hnes:
e determunatior ot the robustness of inteeraung stereo ¢nd mouon processing to extract occlusion
roundaries and. consequently. more accurate depth recuits: and the demonstraton of a model-directed
mavipaton svstem Ior an outdoor mobile robot.

OBSTACLE DETECTION AND AVOIDANCE (Hughes and U.Penn,

Huvhes deveiored an aleorithm using the Markov Rancom Freld NREr formabsm o pertorm
seementation and ~moothing of color imagerv. The MRF zoproach allowed us 1o detine a local enerpy
cencion which consisted of two parts, one describing the interaction potenual between nerghbors, and the
ther assoctated wath the ditference between the predicted iruee and the observed data. Within the MRFE
ramevork. tlo processes were defined: the line process wnich governs the tormanon ot discontinuities
consistine of hornzontal and verucal components. and the ¢oor process winch pertorms smoothing where
Ssconunuities do not easts Since the voal was to compute @i accurate seementation based on local enere
Treastites, the cloonithm onds the MRE state that maximizes the probabifity ot that seementation which
cannatent o ounmmizine the energy function over the imave. Huvhes pertormed the mimimizanon usine G
Heoten! nenwark it tour contrtbuting terms: a smoothunye term, o data term. a potential enerey term tor
“eoane processess andoaopamn term. A theory of parsmeter nterreiationships s bemnye developed.
= ments have soarded hexaronal and trianguiar fattces for the MRE inorder to model naturai
Corradl nere codaraten than the standard rectancular ¢nc sidowed

< asoimvesiated methods o amprove the compuateton of opucal fow tor esumaton ol venerad
Tyt ALoaeorianhm was implemented to obtam e opucal tow at each pixel by minmizing the
mov o amasee Prchiness under smoothness ConsStrams. Freiiminary expenments were periormed using
Lo opnoal o oo feroser camerd rotauon byomimimisene the least squares error in the rotauonal
carameters of the ceserved mouon held. Naviral terraim cmovery was used tor these experniments. The
Seedits oarrear too Peoccurate or cases with small dhistances between the mmaces. This aleonths was
Dorated oo an airomated topocraphical terram antormauon coliector CATTHCY swstem BEstiimaton
Poosmaeerment ot aatudes lonegnade s provided by e ocal navicanen avsterm (LNS) enboard the
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vehicle. Previous data s used 1o esumate the elevation change. The ATTIC is now providing the ability 10
fuse sequences of sensed 3D data into a single representation for a path of over 100 scanned images and
T00 meters of outdoor nawral terrain travel. It is a data representation that provides an inteerated
memory of previously sensed data by eliminatung discrepancies. It may also be useful as a2 mechanism 1o
validate or update digital terrain maps.

At the University of Pennsylvania, the research emphasis has been on mulusensory control and integration
techniques o improve object detection and recognition. Theoretical resuits are beginning to provide new
insights tor svstematuc integrauon policies. The use of superquadrics to determine surtace parameters
otfers nawral descripuons of 3D objects useful for grasping and obstacle avoidance. Sensor models.
including the physics, noise and other limitations, have been developed to predict quality and rehabihty ot
sensory data. Research at UPenn. using wavelet decomposition of a visual signal has shown that the signai

-

can be decomposed into spatial resolutions of power 2 without loss of information.

The University of Pennsvivania will continue researching active perception. including development o!
control stratevies with feedback for looking and feeling. the integration of perceptual informauon into a
coherent framework. and the development of criterion for quality and quanuty of informauon that the
svstem must seek. Towards this yoal. three tasks have been chosen. The tirst task will invesugate scene
segmentaton with o teedback strategy combinming multiple resolution edge detection ising waveiel
decompositiony and {ocal recion growing methods. The second task will extend the compiexiiv o D
shape that the supergquadric model can describe. The final task will invesugate the spectral propertes ol
the vsual sivnal in order to detect color constancy.

PARALLEL COMPUTING ENVIRONMENTS FOR VISION (Maryland. MIT, CMU. Rochester.
Columbia)

The University ot Marviand has been studving how to effecuvely use the Connecuon Machine (o sone
problems in visual navigaton. This research has proceeded along two direcuions - one concerned with
cifrcientiy muluresolution and variable resolution image processing and the second concerned wnh

problems associated with integraung modules across all levels of visual informauon proces<ing 1in the
coittext of a dithicuit visual navieauon problem.

Two alternative approaches have been developed for effecuvely using a massivelv parailel by, creure tor
pertorming muiuresolutton image analvsis - fat pyramids and redundant pyvranuds. In the tat prramud. o
hypercube at pracessors is used to represent a pixel at any resolution level. with the size of the inpercupe
mereasine as image resoluton decreases. In the redundant pyramid, multiple copres of imaces are swored
at each level of resoluton, with more copies being stored as image resoluttion decreases. For both tat and
redundant pyramids. algorithms have been developed for performing basic image analvsis operations such
a~ histogramming, table look-ups and convolution. Manyv of these algorithms have been impiemented on
the Connection Machie. Methods have also “een developed for representuing guadtrees within ¢
Connecton Machine, and 2 hidden surface awzorithm has been designed and implemented on 1
Connection Machine based on this representauon.

Marviand o~ aiso concerred with problems associated with integrating vision modules at aii levens o
processine on the Connection Machine. Project RANMBO (Robots Acung on Moving BOdies mmvoives
navicaling one robot using viston <o that 1t can point a laser designator at a set of semors on g tareet
moved throneh space tor along o surface) by a second robot. A visual navigation system s bemny
constructed ot Manviand  for solving such navigauon problems. Progress 1o date meudes ne
implementation of the fow-level vision system, a sophisucated 3-D pose estimation procram. aig moion
plannine ciconthms all runming together on the Connection Machine.

MUT had concentrated mousing the Connecuon Machine to explore parallel models of computaton and
tor develoming a vision svatemn tor unconstrained environments -— the Vision Machine MIT demensirated
tor the first e the whole Viston Machine svstem working from images (o recovnon throneh ditecration
o othier cies MIET has alo continued to studv the performance of alternative. noncontenLond
architedtyres for navivation.

The Visen Machine o computer svstem that inteerates several vision cues to achieve hieh pertormance
moanstrncured environments tor the tasks of recopnition and ravigauon. Lo also a test=hew for thie
‘heorenca. provress an low- and high-level vision aleorithms. their parailel impiementation and their
imteeration The N ston Machine consasts of o movable two-camera Eve-Head svstem -- e mbut device
-— and i Connectien Machine == the main computatonal engine. Several parallel carlv viston atverims
ANCa campite edre detection. stereo, motion, texture and surtace color i close o reai-ume e ceen




developed and implemented. Theyv have been integrated using the technique of coupled Markov Random
Fieid models 1o provide a cartoon-like map of the discontinuities 1n the scene. In recent months work has
been done to obtain a parual labeling of the brightness edges in terms of their physical origin. As planned.
the output of the mtegration stage has been intertaced with a model~based parallel recogmuon algorithm.
MIT has also begun a project, together with other faculty in the EE Department, with non-DARPA
funding. 1o develop analog and hvbnd VLSI implementations of the Vision Machine main components.

Rochester has demonstrated SIMD-like programs on the BBN Butterfly Parallel Processor that show
inear parailel speedup. Cver the past year a hybnd architecture involving pipehined and MIMD
parailelism has been developed and integrated with a high performance 9 degree of freedom robot head.
Many applicauons tor the pipeline (including tracking, color histogramming, feature detecuon, frame-rate
cepth maps. frame-rate ume-to-collision maps. laree-scale correlations, segmentation using motion hiur.
and others) have peen written. The efficacy of inumate cooperaution between vision computauons and
controfled mouen has been demonstrated. Uulities to ease the programming burden tor the pipeline ure
reiny desiened.

Like manv laboratones. Rochester plans 1o have a high-bandwidth interface between fow-ievel vicion
rrocessing ithe 'ramc~r ite pipelinet and a powertul s\mbollc compuung engine (a large MIND computer
ske the BBN Buttertly Plusy. Programming MIMD apphicatons 15 difficuit. and Rochester < a leader i

Jeveloping opeumm wwtems (PSYCHE), performance monitoring (PPUTTS) and debuyeiny 1INSTANT
REPLAY toois to mare the job easter. The Psvche operaung system will support the reai-ume demanas
ot dvnamic computer vision and high-level planning simultaneousiv. The development toois provide «
craphical and LISP :nterface 1o a mulu-process. multi-processor apphication that ailow repeataiic
~ingie-stepping, stausucs. svmboiie debugging. and other "traditional™ debugging techmques that have ro
nreviously been available to parailel programmers.

Rochester has lmptcmemed object recogniuion algorithms in neural nets, and deveiopeq harduware
realizaunns tor the resulung consuramnt-propacation networks. The domain includes Jarge sets o ahects.
and uces Bavesiun techmiques to handle paruul and incomplete intormauon.

evie Mellon has concentrated on developing the Apply programming languave tor jow-iever visien,
g } \u“portm appheatons of the Warp machine at various sites. The development ol Appiv has cone i
wo directions: mapping Apply onto new parallel architectures, and extending Apphv's hincuonant, oo
;-\1\ang architectures, partcularty Warp. As Warp 1€ now in use at several sites. we have aided noine
derelopment ol new Warp applicauons, including those using Apply.

Apply has been mapped onto a wide vanety ot computer architectures. including reconnieuranle arravs i
transputers and the Metko Compuune Surface: the Carnegie Mellon Scan Line Arrav Processor: FT
Warp, u two-dimensional fault-tolerant arrav of Warp cells: 1Warp, the VLS implementauon ot Warp
oty being developed by Carnegte Mellon and Intel Corporaton. and the Hughes Airerait Corporation
Hierarenical Bu\ Architecture. An mplementation of Appiy on the University ot Massachusetts Image
I'nderqanding Archiecture s underwayv. In addiuon, we have corresponded on possible implementation
St Apph .\uh people ot the Naval Ocean Svstems Command and Swtanford mer\l'\ In the cirrent
plementations,  Appiv has been used tor programming. debueaing ot hardware anc haraware

smaiations, and rrertermance comparisons.

Columima bas devetosed a tree ana peramid machine emulator that runs on the Connection Mach
cminedding makes «v;"...’TIdi ise o the processors and commumication paths. Basic parailel L.
incuons heve cllowed rapid porabylity ot new and exasune tree and pvramid aaeernthmes

cereo, and surtace nterpolation svstems

Coamma has demonstrated several ootems i nuddle-level vision o this environment o s simuiaion-
Noes ~taustics=hased  autocorreianion aivorithm lor surface  orentauon  al tmes  excegds DU
Certormance, A sennd sustem tor calculatine siurtace properues from sparse data has demonsirated e

y aves of tao new rrosaniy optimad aleonthmes, and has expernimentaily documentes the deerees
Setaeen e Looaitation and commnunicalon costsn a Connection Machine -nke environmert
Sttt g Ccarser deree of parallelsmy demonstrates the etfectiveness of fusine severan et
Do By resaural ok steren Cries

noomportant tactar o s ettort bas Peen e new DARPA Inteerated mave U ndersianaime Benchmios
vercre The new renchmdrh s the caccessor o the 1980 benchmark exercise. and fesis ~ome 0! Ui
TS .nr‘c"N G nacane certormance. et oaatiin the lramework of an ointecrated visien casa e

cepchimarth, whnc, wae revelopea Sy thie oneraty of Massachusetts and the nveraise !

NMarvians
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mmvolves model-based recognition of a 2-1/2 dimensional "mobile™ given aruficiallv generated depth and
intensity images. The task is designed to test low- and intermediate-level processing and communication
between subtasks. including top~down control of low-level processing. The University of Massachusetts
developed a sequenual solution to the problem. and a sample parallel solution. which were distributed
along with test data sets to over 15 vendors and research groups. In October of 1988, a workshop was heid
where complete resuits were presented for the Sequent Symmetry-81, Alliant FX-80. Carnegie~Mellon
WARP, and Sun-3 and Sun-4 workstations. Parual resuits were presented for the Thinking Machines
Connection Machine. and the Intel IPSC-2. Complete simutauon results were also presented for the
ASPEX ASP. and the Unwversity of Massachusetts/Huphes Image Understanding Architecture (IUA).
Other vendors and research groups are conunuing 1o develop their own implementations of the
benchmark. Several benchmark extensions and improvements were suggested by workshop participants.
many of which will be incorporated in a future version of the specificauon.

TECHNOLOGY TRANSFER (Marvland et al.)

Marun Marietta Corporation (MMC) at Denver, and the Computer Vision Laboratory at the University of
Marviand (UM) collaborated on a studyv comparing methods for reconstrucung the 3D shape of roags.
One method uses video images from a single camera. whiie the other combines video data with imayge~
abtained by a range ~canner. These methods can be used tor the autonomous steering of a vehicle. The
data used for the comparisons were actual images collectea bv the Autonomous Land Vehicle (AL
The methods are robust and gave consistent interpretations for the 30 road contigurauons tested. Tie
MMC method 1s potenually more powerful, and would make other methods useiess 1f the range scanner
was able to cover the same field as a video camera. With a imned range scanner. however. the method~
appear complementary if thev are combined 30 that the MMC method provides the ¢round truth close o
ihe vehicle. and the UM method uses this ground truth to extend the 3D reconstruction to most of the
wsible road.

Several sites are usine Warp tor apphcatuons. particuiaris in the Strategic Computng, ADRIES. and
SCORPIUS programs. Warp 1s bemng used regutarhy n the Stratewie Compuuny program at Carnecie
Mellon tor control of NAVLAB. including impiementauon of the SCARF color road-toilowing algorithm.
Appiv and WEB routines have been used in the ADRIES program at Science Applicauons Internationai
Corporation. and i the SCORPIUS proeram ot Huches Arrcrate Corporauon. for tasks invohane
interpretation of svnthetic aperture radar imavges. Researoners at Marun Maneta used Appiv and WEB
the Autonomous Land Vehicles program. and Appiv and \WEB have been used at ESL Corperauon in
sarious procrams. Mioch of this was reported ot the Warp User’s Group held in Cherry Hill, New Jer<ey.

N

20=21 June 1955 sponsored by GE Acrospace Lot Moorestown, New Jersey.
Honevwell s applving SCVision technology developed 0 der thie DARPA Scene Dyvnamics program tor

e \Viaon-hased obstacle detection during rotorerarn Lo - autde fheht program trom NASAL
® Model acquisinon and refinement program from e Classitied agency
e Giide Bomb Unit, GBU=13 trainer program irem Air Foree

Hucohes autonomous navication simulation packace s o patental development and evaluaton ool ey
B satt t : : :
considered tor the JPLONASA Mars rover proeram,

Rochester's Buttertiv sottware s dissemuinated throuen BBNC and o freeiv mvatiable . There s evidence that
~centihe papers have transterred some ot the technomees successtuthy . Throueh an imternationa! Computer
newseroup the expertise on the DataCube pipehned processor s both shared ana acguired.

ECRC CBuropean Computer [ndustrs Researcn Centere bas aplemented  Instant Repiay on o
crocessor Stemens MNSonoctherr copy of the Scauentt. The idea has also been mncorporated e
Vmoeha debuvcer o Amoeha s o distnibuted svstem sed wadely throuvhont BEuropen.

Dooaddinion o the g transter of technoloey via punhicatons tpapers nublinbied o saence. Proc ik ET
2t MIT has proviged ~oresare o other ONPoasers, nchidime ADS) Manvland, Nerox PARC Fruenes

Lirorait, Perains-Blimer. and TNCO NIT has aeo coilabporated more directiv with Huehes, anh oo
cvonanve ol peopie o noth directions MIT edee detector and steren programs have been (istniviedd
Lalel tooanversites, o Navy aborators, and detense contractors. Ope ot MIET'S oserals rocoemitio:,

coornhims s used ry Technical Arts in Redmond, Wistuneton tor apphcatons for Boeimne

N et s Bnrdine thie NGS viion sastem. Bas sent to Marun Martetta the NGS Blacsbeara, e
Creretanzed Imave fibrary amaee data packave. crocrams Lo analvane ranee data from the ERIND s
1a




the WARP computer, and the WEB and APPLY image processing tools for the WARP. The CMU
program for building 3-D maps and following the road using reflectance data drove the ALV in August
1988. Hughes has performed a successful demonstration of cross-country navigation and obstacle
avoirdance on the ALV. In addition, the CMU NGS Blackboard has been sent to other ALV contractors
including ADS and FMC.

The NGS Blackboard has been exported to several non-DARPA sites. including NASA-Goddard. DEC,
and Flonda Atlantic University (for use in underwater robot design). The 3-D mapping developed at
CMU has been used extensively in designing and building the AMBLER. a prototype Mars Rover walking
robot sponsored by NASA. Other NAVLAB technology has been used by a number of other projects.
including autonomous navigation of heavy construction equipment.

PROGRAM EVOLUTION

The NGS will continue to evolve as one of the products of SCVision research. Technology transter 1o the
NGS {rom other contractors has been, and will continue to be, mostly through papers and discussions of
resuits. Simularly, the impact of the NGS on applicauons systems will be 1n terms of ideas demonstrated
and technology developed. rather than in terms of actual code delivered. The perceptual algorithms and
architecture of the NGS have been developed for a land vehicle. and should be directly appiicable to the
Army s RCC program. The technology is to a large extent also applicable to guiding unmanned air vehicles
{PIONEER. AMBER): assisting a human pilot (Pilot’s Associate): and unmanned underwater vehicles
INAUVE). Non-DOD applications include a strong influence on NASA’s Mars Rover program. A
particulariy important future application of autonomous land vehicles will be characterization and cleanup
of hazardous wa.te sites. The amount of work to be done is enormous. and performing the tasks by
humans is verv dangerous. The cross—country mapping and traversal capabilities being deveioped and
demonstrated as par: of the NGS are 1deal building blocks for future cleanup vehicles.

Building capable mobile robots requires all ot the technologies being developed as part of SC\ision:
modelling and recognition, dynamic scene and motion analvsis. obstacle detection and avoidance. and
parallel computing environments. Combining the individual pieces into working svstems requires the
wvetems <oftware of the New Generation Svstem. and the real-world tesung only available with outdoor
mobile rabots. The work to date has solved some of the problems, has developed approaches to other
problems that work n limited cases or at slow speeds. and has uncovered further research topics.
Conuinued research. focused on outdoor autonomous navigatuon. will put us at the threshold of being able
to bBuiid viable real-world intelligent svstems.

The techniques bemng developed in SCVision for represenung. recoenizing, and reasoning about natural
and man-made objects have applications in manv other areas. including cartography. photointerpretation.
and tactical target recognition. A natural evolutionary step for this program would be to expiore these
apphicaucns.  In  cartographv, for example. current <tereo mapping techrignes work well on
downward-looking images from significant elevauons. However. they have trouble with high obliques ot
~cenes contarning buidings. tree cover. and high relief features. because the matching algorithms do not
“understand” the three-dimensional nature of these things. [n target recognition the pattern recognition
technigues explored to date have had very limited success tor <imilar reasons.
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SPATIAL UNDERSTANDING: THE SUCCESSOR SYSTEM
Thomas O. Binford

Robotics Laboratory
Department of Computer Science
Stanford University, CA 94305

ABSTRACT

Progress in general, model-based vision is presented. This reports includes a sununary of the SUCCES-
SOR system with updates. The objectives are multi-sensor interpretation and stereo mapping. A zeroth
release of SUCCESSOR has been made. SUCCESSOR is implemented in Commonlisp with device indepen-
dent graphics and user interface to enhance portability. Extensions to tiic modeling system were completed
for the release. Extensive developments have been made in Interpretation using Bayesian networks whicl
exploit networks built up from object and scene models. Recent contributions have been made in percep-
tual strategies for efficient computation in interpretation, including distributing computation among parallel
processors, kue ~ledge acquisition and resource allocation. An experiment is described in recognizing a class
of objects from their image contours. Segmentation into color regions i1s described. Progress has been made
on curve linking to make extended edges.

1. INTRODUCTION

Model-based vision means different things to different people. We mean general. model-based vision
which includes two challenges. One is to provide general methods to use simplifications for special cases, e.g.
few objects, simple environment, or limited range of viewpoints. These methods are valuable for applications
in himited environments. The second challenge is to use models in extremely varied situations and objects |
e.g. out-of-doors with trees.

Some objectives of SUCCESSOR are: multi-sensor integration; fundamental vs phenomenological nod-
cling; comprehensive probability models in interpretation.

A theme in SUCCESSOR is fundamental modeling of the total system. Geometric modeling is one aspect
of system modeling. Modeling of the perceptual system includes modeling of sensed images and modeling
pereeived structures rom images, i.e. modeling of sensors, modeling of illumination or sources, modeling
the interaction of surfaces with light and other signals, and modeling perceptual operators.

We consider vision in a complex, three-dimensional world, e.g. the outdoors. The outdoors has great
variability. Trees, bushes, rocks and terrain have great variation in structure and in appearance. There ate
large numbers of different objects with complex surface markings in complex environments. In industrial
applications, problems can often be engineered to be simple. We have a commitment, that general systems
can be built up from general purpose components and that many applications will be made possible and
effective using specializations of these components together with some general mechanisms for building and
using application-specific operations and knowledge.

The zeroth level release of SUCCESSOR was made in July 1988. The release 1s about 50,000 lines of
Commonlisp code. Relatively extensive documentation was completed by our standards, although informail
by higher software standards. An automated documentation facility was implemented. A port of part of
SUCCESSOR has been made to the Mac 11 by Chelberg. We are about to port parts of SUCCESSOR to the
Silicon Giraphies Personal Iris. A port to a SUN is underway by Michael Black of ADS. We are now evaluating
portable "make” facilities provided by ADS to simplify porting. Probably the most difficult parts to make
machine-independent. are graphics and user interface modules. These and development environments are
not specified in the Commonhisp standard. To maintain portability, we have defined a device independent
graphics module, DVI, which includes an elementary user interface module with menus. We are looking now
at. X-11 as a standard to integrate with DV

12




Figure 1. CSR and SHGC forms
Curved Solids of Revolution and Straight Homogeneous Generalized Cylinders are the primitives volumes in
the CSG modeling system for SCCCESSOR.

2. MODELING SYSTEM

The modeling system was extensively rewritten for the release. Curved Surfaces of Revolution (('SR)
were integrated into the system along with Straight Homogeneous Generalized Cylinders. See figure {.
Curved Surfaces of Revolution are generalized cylinders with constant, circular cross section, i.e. constant
sweeping rule along a curve. The representation and intersection code were extended greatly to include (‘'SR
and cleaned up. The 2D modeling system for modeling cross sections was improved and generalized to allow
arbitrary spline bases for each piece and to allow arbitrary specification of continuity or discontinuity condi-
tions. The implementation remains tied to (r,f) single-valued representation, i.e. star-shaped. Preliminary
work has been done to generalize the 2D modeling system to use ribbons, i.e. to generalize descriptions
of cross sections to include part/whole graphs with ribbon primitives (generalized cylinders in 2D). Some
work is underway to implement non-uniform rational B-splines (NURBs). Work on surface representation
continues.

Primitives are constructed with a menu-driven geometric editor similar to MacDraw which aids in con-
structing generalized cylinders by defining their cross sections and sweeping rules as piecewise smooth curves,
t.e. splines. The editor has three windows, cross section spline, sweeping rule, and primitive solid. which are
shown in figure 2.

CSG parts models are built with set operations of CSR and SHGC primitives [Ponce and Healey 85].
Figure 3 shows an example of the intersection of generalized cylinder primitives. Surfaces of generalized
cylinders are defined by two parameters, (0, z). The parameter space is searched by a quadtree; a box tree in
3-space provides a nested set of enclosing volumes corresponding to the quadtree. The hierarchical search s
guaranteed to find intersections, it is relatively efficient, and is carried out to relatively high accuracy. Times
required are of order 10 minutes on a Symbolics 3600 with Commonlisp code that is not heavily optitized.
The resnlting intersections are made consistent by a method which exhausts degenerate cases of polyhedral
intersections. Intersections are computed on the parameter space to form trimmed surface patches.

Compound parts and assemblies are defined by affixment operations which define transformations among
coordinate frames tied to parts. Affixments are parameterized symbolic expressions which may involve time,
ez in animmtion. Assemblies are defined by a smali language. They are most conveniently built with a
geometric editor.

There is a back to front painting algorithm for polygons which does not require a z-huffer. It can be very
officient on computers that have fast polygon painters. The method does not apply to composite objects,
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Figure 2. Geometric Editor

Generalized Cylinder primitives are constructed in a menu-driven geometric editor.

Figur . 3. Set Operations
Line drawing
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Figure 4. Shaded rendering.

but is useful in the interactive primitive editor.

Z-buffer rendering of polygons is slower than the painting algorithm, but faster than shaded ray tracing,
and is used to generate most of our shaded pictures. Computing time is about 20 minutes for complex
models. Shaded ray tracing remains the most flexible and realistic rendering technique. Here, we again use
the box tree representation of the surface patches to get acceptable computing times. Individual rays are
intersected with the tree associated with a given surface patch. If the ray intersects the corresponding box,
the box is subdivided, and the recursion proceeds. Otherwise the subdivision stops, there is no intersection.
Shadows and texture mapping have been implemented. The complexity is O(N.q) where N is the number
of pixels, and ¢ is the depth of the box trees considered. It is much better than the O(N.49) of classical
algorithms, but computing time for complex pictures remains long: several hours.

A variant of ray tracing is done for line drawing display. We compute limbs and edges as for wireframe
display, and do ray tracing only at contour pixels. This method reduces the complexity of ray tracing by a
factor of S/P where S is the total projected area of the objects drawn, and P is the total projected perimeter
of their contours. Complexity is roughly O(v/N .q) (area grows as the square of perimeter when resolution
increases). This method is relatively fast (about 5 minutes for the elbow).

Graphics is primarily of use for researchers to understand the system and to demonstrate results of
the system. Graphics is one method for modeling images, i.e. modeling appearances of objects. Graphics
methods are useful for individual objects from individual points of view. A challenge in model-based vision
is modeling images in a much more general way, for example for classes of objects like trees for unknown
viewpoints in complex environments, like the outdoors.

A theme in SUCCESSOR is fundamental modeling of the total system. Geometric modeling is one aspect
of system modeling. Modeling of the perceptual system includes modeling of sensed images and modeling
perceived structures from images, i.e. modeling of sensors, modeling of illumination or sources, modeling
the interaction of surfaces with light and other signals, and modeling perceptual sperators.

Material modeling has been included in the modeling system [Healey 87a]. Detailed and generic models
of surface reflectance have been included especially in the visible spectrum. Phenomenological models from
physics have been incorporate for both metals and non-metals for specular and diffuse reflectivity. [Healey
89h] quantifies and supports the usual assumption made in computer vision and graphics that spectral
properties are independent of geometry. This argument supports the use of normalized color under controlled
circumstances in image analysis. Briefly, the Torrance and Sparrow phenomenological model quantifies
specular reflection, surface reflection. Metals have only surface reflection. The Reichman-Kubelka-Munk
model is familiar in psychology, but had not been used in computer vision. 1t is a phenomenological model
which quantifies body reflection, diffuse reflectivity from the interior of dielectrics. Non-metals have a mixture
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Figure 5. The ray traced dnll.

Figure 6. The ray traced elbow.
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Figure 7. VSCP graph
An exploded drawing of surfaces of an object shows components of the Volumne, Surface, Curve and Point
graph of object topology.

of surface and body reflection, diffuse and specular reflection. In a later section we discuss segimentation
using color.

Preliminary experiments with new generic modeling capabilities were described at the last [U Workshop
[Kricgman, Binford, Sumanewcera 88]. That system has been developed further. Although we plan to
extend generic modeling greatly, generic models will be used for several new efforts, namely for generic
prediction, for functional specification, and for a new constraint system which like ACRONYM will include
symbolic expressions with variables which may be partially speciafied. However, the new system incorporates
probabilistic variables and constraints.

The topological structure of object models is being incorporated in a VSCP graph of volumes, sur-
faces, curves, and points, the topological types of dimension 3, 2, 1, and 0 in 3-space. It is also called the
BFEV graph, terminology from the blocks world which was vsed in the Stanford Hand-Eye system in 1970.
The graph describes fundamental spatial relations in 3-space. It is not an aspect graph which descriles
phenomenological relations (appearance in 2-D projections). Algorithms determine the appropriate con-
nectivity and adjacency structure of the VSCP graph automatically from object models, and allow cutting
and pasting. Figure 7 displays an example. The analysis determines surface continuity automatically, e.g.
boundaries of C' and C? patches with tangent and curvature continuity and maintains continuity in the
structure. The VSCP has natural bounding relationships: surfaces bound volumes; curves bound surfaces.
Fach body. surface, and edge has a local parameter space domain, mapping function (to map the 2D do-
main onto the 3D range) and reference coordinate frame. Curves correspond to geometric discontinuities
observable generically in the image (i.e. except on a compact set of measure zero) [Binford 87). The surface
discontinnities arise from SHGC termination conditions, discontinuities in the cross section and sweeping
rile functions, and the intersection of SHGC’s in composite models.

VSCP graphs are hierarchical; they can be used flat if needed. A single C? surface includes the surface
of a body (possibly several). €' and C? patches correspond to different obscrvables in an intensity image
or range imagee. Physical properties of the surface such as reflectance or texture can he examined on this
surface.
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3. INTERPRETATION

W adddress issues of effective recogmtion, mult-sensor interpretation. and low complexity computation.
SUCCESSOR has fundamental modeling of objects, their geometry and physies, rather than phenomeno-
fowieal modeling of appearances. These physical models are directed acyelie graphs of part/whole relations.
Ax deseribed abiove, the graph of volumes linked by CSG3 set operations and asseinbly operations is included
i the VSCP graph which also includes surfaces, curves, and potnts in space. The VSCP maodel graph has
cenerie (class) and individual models.

Seamentation of direct depth data gives surfaces, edges, vertices, and volumes which correspond directly
to topologieal entities i space in the VSCP graph of models. For image intensity data, SUCCESSOR
mtegrates and interprets connected image components as connected components in space, hnking parts into
Sbhyeets [Binford 81]. The primary interpretation in SUCCESSOR is 3-space. although image-based matching
i~ nchuded. There are varied images avatlable, intensity boundaries, color, shading, texture, sterea, motion.
direct depth measnrement. infrared images, radar. and others. There 1s also non-image information from
knowledee of obhjects, hehavior. and context.

The VSCP model graph has typically a half dozen levels or so. The graph of observables has a siilar
munber. Darvas information. aund knowledge occur at a dozen or more levels, In combining multi-sensor data,
ol tvpe of ieasurement or information is represented naturally and accurately at a corresponding level
i the network, We maintain natuial problem relations in a network contaming geometrical and physical
constrants with models of nneertainty i measurement and information [Binford, Levitt. Mann 87]. In
ACRONY M, inequality constraints were the basis for interpretation [Brooks 8110 SUCCESSOR extends this
sreathy toinelude a hierarchical network of relations among constraimts and to mtroduce evidential reasomng
under nneertamty.

In [Nevatia 71 we demonstrated a low complexity method for effective recognition by building conrse,
~tick figure deseriptions to use for indexing. i.e. generating hypotheses for subelasses of objects with similar
topology. This was estimated 1o be effective for abe 1000 objects. We have used guasi-invariauts for
indexing. for hypothesis generation of a simall number o1 candidate hypotheses [Binford, Levitt. Mann 87,
Adndd amd Binford 2],

We emphasize Tow complexity methods in which the Bayesian network s partially imstanniated dynami-
callv, frota thie VSCP graph. instead of generating a complete static interpretation network in advanee.

in new work. [Levitt, Binford, and Fttinger 28] developed a utility-based analysis 1o generate efficient
control of mterpretation. An essential problem here s the distribution of high level perceptual operations
over parallel processors. Work is underway to formmmlate this in an influence diagram framework. We have
begun work to use utility-hased control in generating perceptual strategies for visnal navigation by our mobile
robot.

Objectives for an interpretation system can be classified along multiple axes: many or fow oljjects i
an image: many or few objeets or classes possible: generie object class or sudividual, adentical objeets;
seneric observation or not, te. with viewpoint-insensitive or viewpoint-sensitive methods. A majority of
the community choose few, individual objects, with image-based viewpoint-sensitive, multi-view methods.
In the nulti-view approach. cach view is a separate object. Qur aim for SUCCESSOR. s many objects in
an image, many object classes in the world, generic object classes, and generie observations. We take a
space-hased, object-centered approach. Structured descriptions which can be acliieved are expected to he
incomplete and contain errors. The basis of the structured approach 1s that variation is el less e 3-d
hody-centered relationships than in images.

(Ponce and Kriegman 80} address the recognition and positioning of enrved three-dimensional objects from
their monocular image contours under the following assumptions: Precise geometric models of the abserved
objects {and/or object classes) are available. The data consists of imperfect edge-maps: in particnlar.
knowledge of high level features snch as junetions or corniers is not required. No additional mformation sach
as shading, surface normals, or range is availahle,

This problem is difficult heeause it involves comparing the shape of the two-dimensional snrfaces that
bound the ohserved ohjects to the one-dimensional curves that form their contours in the image.  For
polyh-dra, this s relatively casy. sinee the contour generators (edges) of these objects are view-independent.
The situation is quite different foo curved ohjects, whose contour generators move and deform over the
surface according to the observer’s position.

To make real progress, it is necessary to understand the geometry of image contonrs and to exphicitly
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Figure 8. Recognition and positioning: a bagel vs. a doughnut.

relate their shape to the shape of the observed objects and to the viewing parameters. A new approach to
that problem is proposed for object models consisting of collections of algebraic surface patches and their
intersection curves. This inciudes nearly all representations used in computer aided design and computer
vision, such as CSG models, generalized cylinders, and superquadrics. The image contours considered are
the projections of surface discontinuities and occluding contours.

Elimination theory provides a method for constructing the implicit equation of the image contours of
an object observed under orthographic, weak perspective, or perspective projection. This equation is pa-
rameterized by the position and orientation of the object with respect to the observer. Determining these
parameters is reduced to a fitting problem between the theoretical contour and the observed data points.

Two measures of fit are proposed: The implicit equation can be directly fittea to the data points.
Alternatively, elimination theory can be used to construct a closed-form expression for the distance between
an tinage point and the theoretical contour. Position and orientation are then determined by minimizing
the average of this distance over the data points. The proposed approach readily extends to parameterized
models, whose contour equation simply includes additional shape parameters.

A simple recognition and positioning system has been implemented for a world composed of ton of
different sizes and flavors. It has been successfully tested on several real images of objects such as plastic
rings. doughnuts, and bagels (see figure 8), and has proved to be both reliable and computationally efficient.

4. SEGMENTATION

|Healey 89] presents a parallel color algorithm for image segmentation. From an input color image, the
algorithm labels each pixel in the image according to one of several regions with uniform normalized color.
An edge operator is first applied to the image. Rectangular regions are successively split until they contain
no edge eleinents, i.e. they are uniform. A mean normalized color is computed. Uniform regions are assigned
to matching color regions or used to create new regions. The algorithm has been demonstrated on mctal
objects, plastic objects with specularity, and matte surfaces. It has moderate performance and is relatively
fast.

Healey has examined the phenomenological models for body reflectance and specular reflectance. He has
also examined experimental data for a moderate number of surfaces in order to quantify the range of validity
of the approximation that reflectance is independent of geometry. This is the usual implicit assumption in
computer vision. He shows that the approximation is quite valuable, i.e. that it holds over most viewing
angles.
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Abstract

Image understanding researchy at SRI International is a broad effort spanning the entire range of machine vision
research. In this report we describe our progress in two programs: the first is concerned with modeling the earth's
surface from aerial photographs: the second is concerned with visual interpretation for land navigation. In particular,
we describe progress in the design of a core knowledze structure; in representing. recognizing. and rendering com-
plex natural and man-made objects; in recognizing and modeling terrain features and man-made ohjeets in image
sequences; in interactive techniques for scene modeling and scene generation; in antomated detection and delineation
of cultural objects in acrind fmiagery: and in automated terrain modeling from acrial imagery.

Introduction

The overall goal of lninege Understanding research at SRI International is to obtain solutions to fundamental
& = o
problems i computer vision that are necessary to allow machines to model, manipulate. and nuderstand their
environment from sensor-neqguired data and stored knowledge.

P The first is concerned with modeling the carth’s surface

In this report we describe progress in two prograins.
from aerial photographs: the second is concerned with allowing a rebotic device to successfully navigate through.
and interact with, a natural 3-D environment based on real-time interpretation of seosory data.

Inthe discussion of the first program we describe our progress in developing techniques for antomated terrain mod-
eling from acrial imagery: antomated detection and delineation of cultural objects in aerial imagery: and interactive
techniques for scene modeling and scene generation.

In the discussion of the second program we describe progress in developing techniques for automated real-time
recogmtion of terrain features and man-made objects from image sequences acquired by a combination of ranging
and photographic sensors.

Common to both programs. we desceribe progress in developing new techniques for representing, recognizing,
and rendering complex natural and man-made objects; and the construction of a core knowledge structure (CKS),
whiely can serve as the integrating mechanism for a new generation of generic vision systems. These systes will be
knowledge-hase driven. rather than task-specific (using techniques in which domain knowledge is conmipiled into the
interpretative algerithins),

Animportant theme inomuel of our cnrrent work is an emphisis on computational performance especially
through the development of algorithins capable of exploiting the new parallel machine arvchitectires now available
(e, the Connection Machine' ™y,

Design of a Core Knowledge Structure

The natural outdoor environment poses significant obstacles to the design and successful integration of the
iterpretation. planuing, navigational. and control functions of a general-purpose vision systet. Many of these
finctions cannot yet be performed at a level of competence and reliability necessary to satisfy the needs of an
antonomons robotic deviee. Part of the problem lies in the inability of available techiniques, especially those involved in

VSupported by the Defenae Mapping Ageney and Defense Advanced Research Projects Agency under contracts MDAO03-86-C 0084
and DACATEL5-C.000.4,
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<oheory interpretation, to nse contextual information and stored knowledge i recognizing objects and environmental
fores. Onr voal in this effort. deseribed ina previous paper (Stith&Steas7)lis 1o design a core knowledge
~tructire that can support a new generation of knowledge-based generie vision systems.

A kev serentitic problemn we address in this task is how to devise o way of deseribing the appearance and char-
acteristios of any given physical environment =o thoroughly thint we are assured that deficiencies in available vision
icchiigues can Le overcome by access to =ueh prior knowledge. We cannot resort 1o the equivalent of using a
pixcl-level deseription as the only or ultimate solution because such detailed data would be impractical to obtain,
~tore, retrieve, or use i the interpretive process: such low-level data would alimost certainly be inaccurate when
ahtamed. and would quickly degrade as physical changes occnr. (Fven illumination changes would cause a pixel-level
desepiption of appearance to become useless.)  Finally, accurate interpretation must be based on more than just
Dnnee appearance. and there is no immediately obvious way of deseribing and storing such scmantic (nonpictorial)
ddormation at arbitrary levels of detail.

Ihe CRS s designed as a community of independent interacting processes that cooperate in achieving the goals
o the seene modeling system. These processes may represent sensors, interpreters, controllers, user interface drivers,
cr any other information precessor. Fach process can be hoth a producer and a consumer of information. Each has
aeerss Lol g control over, a certain limited portion of the knowiedge/database resources. The CKS architecture
perintts access to stored knowledge by both geographic location and by semantic content.

An tnitial nnplementation of the CKS was completed early i 1087, and subsequent activity has had two objectives:
appdving the CKS to a variety of distinet perception problems. and improving and extending its capabilities. The
oot stonificant recent enhancements to the CKS have been the design and implementation of a temporal directory
as an imdex to dynamic data, and the coupling of the CKS to the Cartographic Modeling Environment (discussed
Laser. also see [Hanson & QQuamss).

There are currently several efforts underway that make use of CKS as part of @ perceptual systemi. Corporate
Beserel sued Development at General Blectric Company s developing an intelligence analysis system called Pace.
vhich includes CRKS as a major component [Corby88]. It fuses inforination from multiple sensors and uses the belief
veechanisins and spatinl directory of CKS to manage hypotheses about physical objeets. CRKS 15 also used routinely
i our cwn research at SR One of these efforts, which uses the context provided by the CKS database to coustrain
visual processing, is briefly described below.

A Machine Vision System Built on the CKS

The Core RKnenvledge System was designed to serve as the central information manager for a sensor-based au-
Tonomons systenn In one of the robotic vision research efforts we describe in these proceedings [Fischler&Strat89]. we
aldress the problem of designing a vision system for a vehicle that can recognize objects and create a map of a piece
A tereaan from the imagery it collects while traversing the areia. The Core Knowledge System serves two important
Sretions osuppart of such a vision system. First, it encodes a world model that exists beyond the interpretation
of asingle image or sequence of images. Such a persistent description of the terrain and the objects that occur there
is o neecssary component of a vision system that is to benefit from its accumulated experience and which needs such
A lel as o basis for planning future activity. Ideally, the contents of the CKS should never be emptied, rather an
inereasinaly detailed model should be developed from the partial interpretations made by the vision system as the
rohint repeatedly traverses the areas of interest.

Second. the existence of a world model provides the context for image interpretation. Prior expectations of what
i< 1o e found in an image makes it casier 1o recognize scene features. The Contextual Vision System (CVS) we are
constructing makes widespread use of the CKS for representing the world, for controlling its analysis decisions, and
for checking the global consistency of its results. The CKS makes it possible for CVS to reason about the full three-
dirensional nature of the environment. Its context-driven control structure is a means for avoiding the exponential
complexity inherent in visual recognition of a complex world. The conclusions drawn by the vision system are stored
in the CRS, and are thus inuediately available to a robot’s route-planning, navigation, and task-specific subsystetns.

Representing the Dynamices of the Environment

Diring this past vear, we have extended our database design and developed a methodology for representing and
creanizing the temporal aspects of the data. This design allows data access not only through three-dimensional
~patial indices and semantie categories, but through the temporal behavier of the data as well. With this design.
queries about an ehjects identity and location in the world can be resolved. as well as queries about the future or past
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oatens o the chgects The ability 1o prediet an objects future Tocation and behavior s the basis for the effective
Lonrrzenent o sensory intormation by preventing what would otherwise be an inundation of redundant information.

Pl design s posed o the construetion of dual space representations of the motion parameters of an object. By
<t rme el imdexing withun the dual spaces it can be very efficient to predict the future motion of an object, or to find
pbcbaects that conld move toagiven loeation at some point in the future, It s important to choose an appropriate
cornnetertzatien ol asstorage efficieney or retrieval advantage is to be obtiined we have already Cscovered several
~ch paratneterizations for some ordinary classes of jnotion and may include others if the need arises. In addition
1oorepresenting physiead motion, the dual space approach is useful for modeling the change in attributes other than
Coennien Forexample, “motion” through color space. growth of a plant, and change in air temperature are potential
appheations, CA report oo thns work s uow in preparation.)

Dircer Manipulation of CKS Database

B canse the mtended domain of the CKRS s the physieal. outdoor environment, it is often useful 1o view the
contents of the database through svnthesized imagery. Several interfaces iave been constructed to allow for interactive
srieval e manipulation of the contents of the database.
Oneantertiee s acsophisticated interaction and display facility that has been constructed from several tools devel-
Sbar SRE Thos mterface allows full three-dimensional rendering and manipulation of any subset of the database.
The primary rendering of a landform is provided by the Cartographic Modeling Environment {ilanson& Quam&ga.b]
rooadlow viewine from any perspeetiver icons correspouding to cach data token in the subset of interest are superim-
Pl at thelr appropriate physical location. Some objects are displayed using superquadrie primitives to produce
e~ moere realistie than these with stylized icons. Data tokens that liave specified geometric modeling information
aredisplayed nsing that information; the remainder are displaved using “prototype”™ models stored in the semantie
ootwerke T dieat resnln isoa powerful modeling and display systen coupled to the knowledge /database. that is

sl to provide convineing synthetie iimagery from symbolic information stored i the CRS.

Representing, Recognizing, and Rendering Complex Natural and Man-Made Objects

Pl mnin theoretical issue we address in this effort s how to maodel alarge elass of natural and man-made objects
i Dinetionally nseful way, The domain for our research is outdoor navigation. in which a robotic device starts with
annatial meded of its environment and incrementally updates this model (and its relative position) as it moves to
cather datacor perform a task. We require the device to nuprove its performance by inereasing its ability to recognize
chjects and/ar deereasing its processing titme as it sces things over and over again.

Woe hawve partitioned this type of perception task wmto three stages: modcd instantiation, mission planning, and
caecndion. Inthe nstantiation stage, a user gathers as much a priorl information as possible about the area of interest.
This may melude selections from a standard set of cartographic items, such as terrain maps, soil classification maps.
and road networks. Inoaddition, given a specific mission, the uscr may interactively augiient this database with
Heher-vesolution deseriptions of a few key features. In the mission-planning stage. the user expiores possible vehicle
paths and evaluates their viability in terms of several factors. ane of whicl ix the interaction of the control system
with the prereeption systenn. The planning stage provides such things as a list of expected landimarks and deseriptions
of therr visibality and shape. In the third stage, the execution stage, the veliiele performs its mission, navigating
aronndd obstacks and updating its position estimates as it heads toward its abjective.

A key to suecessful performance in all three stages is the set of representations used to describe the environment.
Nuoljeet may be sketelied in the model instantiation stage, projected into synthetic images during the planning
stage. and matehed in the exeention stage. Therefore, the representations, ju addition to covering a wide variety
of mam-made and uatural objects, must be able to express a range of abstraction and precision. Our strategy for
exploring these representation issues is three-fold. First, we are developing a set of representations for classes of
freatures, sueh as terrain patches, rocks, and trees. Second, we are developing a Core Knowledge System (see a
provious section) to serve as an integrating mechanisi for all the information about an environment. And third,
we are evaluating our progress by performing experiments using real data obitained from the “red-rock™ area at the
Martin Marietta site ontside Denver,

b September TOST thiree SRI researchers spent a few days at Martin Marietta sueveyving prominent features in
thecelectedarea and gathering an mitial set of range and intensity sequences consistent with our navigation seenerio.
Martiy Marietta seientists modified their data acquisition programs as required and interactively drove the vehiele
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several times through the region to gather data. Since then Martin Marietta personnel have gatliered two additional
sets of data from the red-rock area for us. We are using these data as part of a demonstration i which we bring
together several techniques produced by our longer-tern investigations. In the subsections below we describe hotly
the long-termi research and its application to the demonstration task of navigating through the red-rock area

Model Instantiation

The goal of the model instantiation stage is to compile as complete a model of the environment as possible prior to
the definition or start of a nussion. Given a specific mission, the user interactively adds mission-specific information
to the environmeuatal model. In our modeling of the red-rock region, we started with ETL’s 30-meter and 5-meter
digital terrain maps of the area, computed a 0.3-meter terrain model of the smaller red-rock region, and then added
models of prominent discrete terrain features, such as trees and rocks. The low-resolution terrain maps provided the
global context. The high-resolution map supplied a detailed ground model and key parameters for the specific object
models.

We constructed the high-resolution elevation map of the red-rock region by applying a stereo technique developed
by our group at SRI [Barnard88,89]. The resulting map provides a height estimate for each pixel in the original aerial
tmages. For our hmages, a pixel corresponds to approximately one square foot on the ground. Although this map
contains some errors, the majority of the heights are reasonable and at a resolution much higher than is available
from any other source. The prominent rocks and trees are plainly visible.

We used the detailed height map to construct our initial model of the red-rock region. which consists of a terrain
map and a set of labeled objects sitting on the terrain. \We estimated the height of the terrain under large objects
by interactively deleting them from the lieight map and then filling the resulting holes by interpolation. We used the
Cartographic Modeling Environment [Hanson&Quam&8a.b] to build three-dimensional models of the key features.
which we then entered into the CKS for permanent storage.

The individual objects are represented by superquadrics with fractal textures or as faceted volumes. They are
entered in the CRS according to their semantic category and location in the world. OQur initial model of the red-
rock region includes about ten large trees, bushes, and rocks. In the future we plan to extend our list of semantic
descriptions and develop recognition techniques that are specific to these new classes.

Mission Planning

The planning system has two purposes: one is to suggest and evaluate vehicle paths for accomplishing a mission:
the second is to compute and “down load™ mission-specific data and instructions to the vehicle control system. A
typical instruction might be to aim a sensor in a certain lirection and start looking for a particular object at a
specific time. So far we have concentrated on the interactive evaluation of paths and have just begun to producv
data and instructions for the execution-time perception systeim.

Our interactive evaluation system is constructed using the CKS and the Cartographic Modeling Environment.
It provides the user with the ability to generate sequences of images (i.e., movies) that correspond to the data that
would be gathered by the vehicle's sensors if the vehicle followed the proposed path through a modeled world. These
synthetic images provide a dramatic way to visualize a proposed path. The system can highlight key landmarks so
that the user can easily determine the range of vehicle positions from which they are visible, their range of shapes,
and so on. With this system we “drive through” our model of the red-rock region and select navigational landmarks
for use during the execution stage.

Execution

During the execution stage, the vehicle navigates toward its destination by interpreting sensed data in terms of
its predicted model of the world. To accomplish this, it performs, among other things, the following five functions:
it detects unknown ohjects, classifies them, recognizes landmarks. tracks objects from one image to the next, and
updates its world and vehicle models.  Several groups. including Hughes and Carnegie-Mellon University, have
demonstrated techniques for detecting unknown objects in range data. However, it is significantly harder to classify
these objects into their semantic categories (e.g., rock, bush). Classification is critical for navigation because the
vehicle cannot operate safely if recognition is not reliable. For example, the vehicle may be able to run cautiously
over bushes, but not over rocks. We are currently investigating ways to perform this type of object classification by
using the CKS to access the semantic properties of an ohl(wt and the relationships hetween objects (see a previous

section and these proceedings [Fischler& Strat89}).
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Recently we have developed o strategy for inerementally updating a model of an environment during exploration
by a roliotic vehiele (see the next section and these proceedings [Bobick& Bollessta)).

Recognition and Modeling of Terrain Features and Man-Made Objects

Our goal in this research eflort is to develop automated methods for producing a labeled three-dimensional seene
model from many images recorded from different viewpoints and from image sequences. We view the image-sequence
approach as an important way to avoid many of the problems that hamper conventional stereo teehnmgues because
it provides the machine with previously unavailable information about the scene. The “redundant™ imformation can
be used to inerease the preeision of the data and filter out artifacts; the new information provided by the additional
mages can help to disambignate matches for features that oceur along occlusion boundaries and in the midst of
periodic structures,

We have developed two techniques for building three-dimensional descriptions from mltiple images. One s a
range-based technique that builds scene models from a sequence of range images; the second is a motion analysis
technique that analyzes long sequences of intensity images. The range technique uses data from an inertial gnidance
sensor on the vehicle to compensate for vehicle attitude and position changes caused by bumps. curves. and speed
changes. As a result the range data are transformed into a static world-coordinate system, whieh s a necessary first
step for almost all tarther analysiz. By combining the data from multiple images, we are able to filter out artifacts
and produce a more complete mop of the region in front of the vehicle. We have developed several representations
of these three-dimensional data, including height maps, orientation images. and voxel arrays. each of which offers
distinet coherence and resolution advantages to the analysis procedures.

Our approach to balding seene models from a sequence of range images is to provide the svstem with a wide
variety of object and terrain representations and an ability to judge the appropriatencss of these representations for
particular sets of data. The variety of representations is required for two reasons. First, it is needed to cover the
range of object types typieally tonnd in outdoor environments. And second, it is necded 1o cover thie range of data
resolutions obtained by arobot velicle exploring the environment.,

The surpose of the evaluation procedure is to judge continually the validity of deseriptions computed for objects
as new data are obtained. In this scheme the model of an object typically goes through a sequence of representations
as new data are gathered and processed. One of these sequences might start with a crude blob deseription of an
initially detected object include a detailed structural model derived from a set of high-resolution images. and end
with a semantie Iabel based on the object’s description and the sensor system’s task. This evolution in representations
is guided by a structure we refer to as “representation space™: a lattice of representations that is traversed as new
mmformation ahont an ohject becomes available. One of these representations is associated with an object only after
it has been judged to he vadid, We evaluate the validity of an object’s description in terms of its temporal stability.
We define stability in a statistical sense angmented with a set of explanations offering reasons for missing an object
or having parameters change. These explanations can invoke many types of knowledge, including the physics of the
sensor, the performance of the segmentation procedure, and the reliability of the matching technique. To illustrate
the power of these ideas we have implemented a system, which we call TraX, that constriucts and refines models of
outdoor objects detected in sequences of range data gathered by an autonomous land vehiele driving cross-country
[Bobick& Bolles89. these proceedings).

We have presented a motion analysis technique, which we call Epipolar-Plane Image (I1P1) Analysis [Bolles.Baker,
LMarimont87]. 1t is based on considering a dense sequence of images as forming a solid block of data. Slices through
this solid at appropriately chosen angles intermix time and spatial data in such a way as to simplify the partitioning
problem: These slices have more explicit structure than the conventional images from which they were obtained.
In the paper we demonstrated the feasibility of this novel technique for building structured, three-dimensional
descriptions of the world.

Recently we have extended this technique [Baker&Bolles88] to locate surfaces in the spatiotemporal solid of data,
instead of analyzing slices. in order to maintain the spatial continuity of edges from one slice to the next. This
surface-hmlding process is the three-dimensional analogue of two-dimensional contour analysis. We have applied it
to a wide ranze of data types and tasks, including medical images such as computed axial tomography (CAT) and
magnetic reasonance imaging (MRI) data, visualization of higher dimensional (i.c., greater than three-dimensional)
functions. modeling of objects over scale, and assessment in fracture mechanics.

We have also implemented a version of EPI analysis that works incrementally, applying a Kalman filter to update
the three-dimensional deseription of the world each time a new image is received. As a result of these changes the
program produces extended three-dimensional contours instead of sets of isolated points. These contours evolve
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over tine. When a contour is initially detected, its location is only coarsely extimated. However, as it is tracked
through several images, its shape typically changes into a smooth three-dimensional curve that accurately describes
the corresponding feature in the world. We are currently planning a parallel unplementation of our surface-building
algornthim.

Interactive Techniques for Scene Modeling: A Cartographic Modeling Environment

Manual photointerpretation is a difficult and time-consuming step i the corpilation of cartographic information.
However, fully antomated techniques for this purpose are currently incapable of matching the human’s ability to
employ background knowledge, common sense, and reasoning in the image-interpretation task. Near-term solutions
to computer-based cartography must include both interactive extraction techniques and new ways of using computer
technology to provide the end-user with useful information in the form of both image and map-like interactive
computer displays.

In order to support research in semiautomated and automated computer-based cartography, we have developed
the SRI Cartographic Modeling Environment. In the context of an interactive workstation-based system, the user
can manipulate multiple images; camera models; digital terrain elevation data; point. line, and area cartographic
features: and a wide assortment of three-dimensional ohjects. Interactive capabilities include free-hand feature entry,
feature editing in the context of task-based constraints, and adjustment of the scene viewpoint. Synthetic views of
a scene irom arbitrary viewpoints may be constructed using terrain and feature models in combination with texture
maps acquired from aerial imagery. This ability to provide an end-user with an interactively controlled scene-
viewing capability could eliminate the need to produce hard-copy maps in many application contexts. Additional
applications inchuide high-resolution cartographic compilation, direct utilization of cartographic products in digital
form, and generation of mission-planning and training scenarios.

Recent research has focused on developing more flexible ohject representations, irregular terrain grids, and nn-
proved interfaces to other systems such as the CKS. Especially important technical improvements include a refor-
mulation of the computational model of the viewing camera to (1) reduce dynamnic range problems in the Z-buffer,
(2) eliminate camera transformation singularities, (3) handle scene facets that lie partially behind the camera, and
(1) correctly account for perspective distortion of nearby facets in texture-mapped terrain models by recursive facet
subdivision.

Our work in this area has been described in two papers, one describing basic design issues for this system
[Eanson, Pentland £ Quam8T), and the other providing an overview of the implementation [[lanson& Quamss]j.

Automated Detection and Delineation of Cultural Objects in Aerial Imagery

The detection, delineation, and recognition of any significantly broad class of objects (e.g., buildings, airports,
cultivided Tand) o aerial imagery has proven to be an extremely difficult probleni. In fact, a nominal component in
the solution of this problem. image partitioning, is considered to be one of the most refractory problems in machine
Visioh.

We have recently formulated an optimization-based approach, applicable hoth to image partitioning and to
subsequent steps in the seene analysis process, that involves finding the “best”™ description of the image in terms of
=ome =pecified deseriptive Janguage.

In the caze of image partitioning [Leclere89a,Leclere89b, Leclere8Oe (these proceedings)), we employ a language
that deseribes the image in terms of regions having a low-order polynomial intensity variation plus white noise;
recion houndaries are deseribed by a differential chain code. The best description is defined as the simplest one (in
the sense of least encoding length) that is also stable (i.e., minor perturbations in the viewing conditions should
not alter the description). This best description is found using a spatially local and parallel optimization algorithm
(a signiiicant improvement over the algorithm as first presented [Leclere88]) that has been implemented on the
Connection Machine, This description is further simplified where appropriate by (1) merging nonadjacent regions
that ean be more simply described by a single polynomial, and (2) describing the boundaries using straight lines and
other more global models.

In situations where the required image description must proceed beyond that of a delineation of coherent regions,
we reaquire an extended vocabulary relevant to the semanties of the given task. Fua and Leclere deal with the problem
of boundary /shape detection given a rough estimate of where the houndary is located and a set of photometric
(intensity-gradicut) and geometric (shape-constraint) models for a given class of objects [Fua& Leclere88). They
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define an energy (objectivey function that assumes a mininal vadue when the models are exactly satisficd. An
mial estimate of the shape and location of the curve ix ased as the starting point for finding a local minimum
of the energy function by emibedding this curve 1 a viscons medinmn and solving the dynamic equations. This
encrgy-rinimization technigques which evolved from aless-etlicient gradient-descent approach, has been implenmented
on the Connection Machine. It has been applied 1o straight-line boundary medels and to more complex models
that include constraints on smoothness, parallelism, and rectilinearity, and has been incorporated into the SRI
Cartographic Modeling Environtuent deseribed earlier. In an interactive mode, the user supplies an initial estimate
of the boundary of some object (which may be quite complex, like the outline of an aeroplane) and then, if need
T reests thentimived e by applving farees ta the cosve o b changing one of a few opti L o ode!
parameters.

Automatic recognition of unportant cartographic objects, such ax man-made structures, from acrial itagery has
beon addressed [Fua& HansonsS9a (these procecdmgs). Fual Hanson89b). The basix for the approach is a theoretical
fernmtation of object delineation as an optimization problem: practical objective mieasures are introduced that
# diserimmate among a multitude of object candidates using a model language and the minimal-encoding principle.
This approach is then applied i two distinet ways to the extraction of buildings from acrial imagery: the first is

an operator-giided procedure that uses a massively parallel Connection Machine implementation of the objective
mensure (Fuast] to discover a building in real tinie given only a crude sketeh. The second is an antomated hypothesis
coenerator that employs the objective measure during vicious steps in the hypothests-generation procedare, as well as
i the final stages of candidate selection: hoth serial and parallel {Connection Machine) approaches are implemented.

We believe that both the Leclere and the Hanson and Fua technigues represent significant advances in the state-
of-the-art i their respective areas of hmage partitioning and delineation of cultaral features. Both systems have
been able to produce excellent results i complex situations where existing (typically local) approaches fail. Future
work on these techniques will emphasize the meorporation of more complex models, three-dimensional contextual
mfornation, and efficient parallel implementations,

Automated Terrain Modeling from Aerial Imagery

Stereu reconstruction is a critical task i cartography that has received a great deal of attention in the image
understanding community. [ts importance goes heyvond the obvious application to constructing geometric models:
Understanding scene geometry is necessary for effective feature extraction and other scene analysis tasks. While
considerable sinccess has been achieved in iimportaut parts of the problem. there is no complete sterco-mapping
systemn that can perforin reliably 1 a wide variety of scene domains.

The standard approach to the problem of stereo manping involves finding pairs of corresponding scene points
in two images (which depict the scene from different spatal locations) and using triangulation to determine scene
depth. Varions factors associated with viewing conditions aud scene content can cause the matching process 1o fail:
these factors include occlusion. projective or nnagining distortion, featureless areas, and repeated or periodic scene
structures. Some of these problems can be solved only by providing the machine with more information, which may
take the form of additional itmages or descriptions of the global context.

Our rescarch strategy in this task is to develop new techuiques for the key steps in the stereo process, such as
matching and interpolation. and. in parallel, to integrate thes new ideas with existing techniques in the context of an
operational systeni. As part of this process SRI has implemented [Hannah®5] and evaduated [Hannaliss] accomplete
high-performance sterea system. Inoa test of existing stereo systems on 12 pairs of digital images. conducted by the
International Society of Photogrammetry, our system was able to successfully process more of the mages than any
otlier system (11 out of the 12 pairs): while no formal ranking of the test results will e published. it appears tha
this systemn placed first {or very near the top) in the competition.

We are currently investigating a number of novel approaches to stereo depth recovery that soe significant depar-
tures from the conventional paradigm. In particular. Barnard has developed a hirrarchical stochastic stereo-matehing
system. with the goal of developing practical system for cartographic analysis: the method has heew iniplenented on
SRIs Connection Machine [Barnard20a bl The method nses sinnidated annealing (o find a dense disparity niap that
minimizes a linear combination of two functions: (1) the photometrie error associated with the wap, and (2) the
first-order variation of the map. In other words, it finds the (approximately) smoothest map that reascnably explains
the data. The method incorporates several innovative features that permit it to solve large prohlems in o general
optinnzation framework — siamlated annealing that s generally considered 1o he vepy time consuming:
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o 1 cperates over aseries ol wereasingly Hner resolutions separated by one-octave fow-pass or bandpass filters. By
finding an approximate solution (Le o conrsely quantized disparity map) relatively quickly at low resofution.
the aystem positions itsell near the optimal region of ts state-space at the next-higher resolution.

o Tt tses anew foru of sinlated annealing based on simulating the microcanonical ensemble. As a result, the
merhod can be implenented efficiently with low-precision integer arithietic and with low-quality yvandom num-
bers, These are important considerations when implementing the method on a fine-grained parallel processing
systern,

e Because tne vascc symilatcd anealing algorithing s nol readl, veciorizot o, e connot be aaplemented {fejently
on A conventional supercomputer. The Connection Machine, however, is a nearly ideal architecture for this

class of miethods.

I paratlel with the above work, Barnard is investigating a neural-network model for stereo matching that uses a
continuous Hoplield-style network to minimize the same cost function used in the stochastic model [Barnard89a). The
neural network uses a representation that is even more highly parallel than thie stochastic model: its representation is
not asmgle-valued disparity (1o depth) map. but rather a three-dimensional lattice of disparitics that is isomorphic
to asample of the three-dimensional space seen by the observer. This representation can potentially allow the method
to deal with situations that are troublesonie i the single-valued represemation, such as occlusion, transparency, and
crossover. I successful, the neural-network approach could lead to extremely fast processing through analog VILSI
nplementation.

While the stereo problem will remain o focus of a portion of our rescarch, our primary effort now is to develop
an understanding of how knowledge of seene depth information can be effectively used in the scene-partitioning and

abject-recognition tasks.
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Image Understanding Research
at Carnegie Mellon

Takeo Kanade and Steve Shafer
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213

In the last year, image understanding research at CMU has been carried out by a team of researchers led by several
faculty: Takeo Kanade, Chiun-Hong Chien, Martial Hebert, Katsushi Ikeuchi, Eric Krotkov, Steve Shafer, Chuck
Thorpe, and Jon Webb. We have been joined this year by Andy Witkin. The group also includes numerous
graduate students, staff, and visitors. Our research spans a variety of topics in machine vision:

o Computer Vision as a Physical Science
« Intrinsic optical models for vision
+ Model-based inspection of metal surfaces
» Dynamic stereo based on uncertainty modeling

¢ Vision Algorithms
* Hierarchical clustering by the NTHC algorithm
* Analysis of repetitive texture
» Geometric Modeling of Objects and Sensors for Vision
» The VANTAGE geometric/sensor modeler
* Automatic generation of object recognition programs
* Framework for geometric reasoning for 3-D vision
* Robust geometric modeling

e Parallel Architectures for Vision
« Software and Hardware for Parallel Vision
 The 2D Machine

e Vision for Mobile Robot Navigation
* Building terrain descriptions from range images
* Road following using reflectance images
* Road following by color vision
* Mobile Robot Systems
* Map-based navigation
* Path planning for off-road travel
* The Autonomous Planetary Rover

1. Computer Vision as a Physical Science

Our research on physics-based methods for computer vision addresses modeling physical phenomena for robust
and reliable low-level vision. It is based on the recent body of research in this area, which has begun to conclusively
demonstrate that algorithms derived from models of physical processes are far more accurate and reliable than
heuristically derived algorithms.

Our research in low-level vision includes basic physical models for vision, the application of these models for
visual inspection, and stereo-motion analysis for robut vehicles.

1.1. Intrinsic Optical Modeis for Vision

The traditional approaches for low-level machine vision involve edge detection or region grouping, which do not
provide very high-quality data for visual interpretation. The shortcoming of such methods is that they are based on
the property of signal coherence -- the premise that each object or surface has a uniform intensity or color signal in
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the image. This premise is violated by many natural phenomena such as shadows, highlights, and surface wxture.
Instead, we are developing a new approach for low-level vision in which physical models are applied to the raw
image data before any other analysis is performed. We call these intrinsic models using the terminology of Fischler,
Tenenbaum, and Barrow.

Our approach has been to apply intrinsic models to conventional imagery, i.e. without special sensors such as
thermal or polarization imaging, and to attempt to provide a subsitute for traditional edge detection and region
grouping. To do this, we (Klinker, Shafer, Kanade) developed a segmentation algorithm based on model coherence,
in which pixels are grouped according to their conformity with a hypothesized instantiation of a physical model, as
opposed to the traditional signal coherence methods. This has been demonstrated to give better results than
traditional segmentation methods {17, 18, 19]. One conclusion from this work was that general-purpose vision
demands the imegraﬁon of many intrinsic models, not just one at a time (which has been the usual research
paradigm). In particular, tasks such as material type classification require both spatial and spectral analysis, and
both kinds of analysis depend on models of both the scene and the camera.

Intrinsic models are needed for several aspects of the scene: the illumination environment, the optical properties
of materials (primarily reflection), and the imaging system itself. In the last year, most of our effort in this area has
been directed toward models of the imaging system (Krumm, Novak, Willson, Shafer). One of our projects has
been the development of an improved Fourier-domain model of imaging through the analysis of Moire patterns.
Moire patterns are very pronounced low-spatial-frequency waves caused by intcrference among multiple gratings.
They are used very extensively for industrial surface inspection, but they also arise quite commonly in imaging
fine-grained repetitive patterns. Most work in this area has been based on a “crossed grating” model in which the
camera is modeled as a pair of orthogonal gratings, but this model is not completely accurate. A better model in the
literature is the "sampled grating” model, which explicitly models the integration and sampling patterns of the sensor
array. We have improved on this in a new "recursive sampled grating” model that also includes the effects of video
transmission and subsequent digitization. The value of this model has been sho wn experimentally on real cameras.
Moire pattern analysis appears to be a promising approach for calibration of the spatial properties of an end-to-end
(lens + camera) imaging system.

We have also been studying the automation of imaging systems for high-precision robot vision, and have
developed the "Imaging Space” model for calibration of an automated imaging system [30]. The Imaging Space is
the configuration space for the imaging system, in which each machine-controllable parameter is one dimension.
These parameters include the position and orientation of the camera, lens parameters such as zoom and focus, and
other optical parameters such as filter selection and exposure time. The state of the system is a single point in the
Imaging Space. In active vision, the imaging system follows a trajectory through the Imaging Space; thus,
purposeful control of the imaging system can be formulated as a constraint satisfaction problem to determine the
region of the Imaging Space that can provide the necessary images for the desired task. We are now beginning to
develop the corresponding methods for complete geometric and radiometric calibration of the imaging equipment in
the Calibrated Imaging Laboratory.

1.2. Model-Based Inspection of Metal Surfaces

Inspecting metal surfaces is one of the most difficult tasks; yet, it is one of the most frequently required tasks in
many application domains. Reflectivity of metal surfaces greatly varies even though they comes from the same
process. All existing shape extraction techniques, which rely on assumed surface properties, cannot handle these
variations. We have been working to develop a method for determining the shape of surfaces whose reflectance
propertiecs may vary from Lambertian to specular without prior knowledge of the relative strengths of the
Lambertian and specular components of reflection.
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We (Nayar, Ikeuchi, Kanade) have developed a system called "photometric sampling” (28,29]. The object
surface is illuminated using the extended light sources and is viewed from a single direction. Surface illumination
using c¢xtended sources makes it possible to ensure the detection of both Lambertian and specular reflections.
Multiple source directions are used to obtain an image sequence of the object. An extraction algorithm uses the set
of image intensity values measured at each surface point to compute orientation as well as the relative strengths of
the Lambertian and specular reflection components. We have completed a 2D version of the device. Using this
device, we conducted on Lambertian surfaces, specular surfaces. and hybrid surfaces whose reflectance model is
composed of both Lambertian and specular components. The result show high accuracy in measured orientations
and estimated reflectance parameters.

1.3. Dynamic Stereo Based on Uncertainty Modeling

Dynamic stereo, which is the ability to compute range maps continuously from stereo image ..Juences, has
important applications in all aspects of robot navigation and manipulation. Constructing «4 dynamic stereo system
requires judicious engineering of mathematical models and operational sensing strategies to achieve robustness,
efficiency, and generality. In particular, a carefu! treatment of measurement uncertainty can lead o a reliable
dynamic stereo system. In our previous work in this area (Matthies, Kanade, Shafer), we explored the modeling of
uncertiinty and how it can be applied to the interpretation of image sequences. Currently, we are developing the
mathematical and the operauonal techniques for building a robust and effective dynamic stereo system based on
these results in the explicit modeling of uncertainty.

The central mathematical components of our approach are Bayesian estimation methods applied to random field
models of the range map. The random field models allow us to represent previously estimated range information in
terms of a prior probability distribution for the range map. The Bayesian estimation methods provide optimal
combinations of prior information and new depth measurements when doing stereo matching to compute a new
range map.

Thesc theoretical concepts are embodied in a new technique for dynamic stereo that uses small camera motions
for reliable initialization of a range map in a two-camera stereo system. The small motions provide narrow-baseline
image pairs from one or both cameras of the system. For initialization of the range map, range estimates computed
from these narrow-baseline image pairs are used to compute a highly reliable, more precise range map by matching
tn a wide-bascline image pair taken from both cameras. For robots operating in difficult-to-interpret, outdoor
environments, periodic verification of a range map is also essential. This can be achieved with small camera
mouons n a similar manner.

In 1988, we developed the basic mathematical models and operational strategies underlying the use of small
camera motion to initialize stereo range maps [23, 24, 31]. Current work is continuing the experimental evaluation
of these methods. A goal for future development is to combine our previous work on motion estimation (1987:
Matthies and Shafer) with the new methods, leading to an integrated visual navigation system for a mobile robot.

2. Algorithms for Vision

2.1. Hierarchical Clustering by the NIHC Algorithm

Clustering techniques continue to be one of the mainstays of low-level vision. Computer vision applications of
cluster aralysis, such as high-dimensional Hough transforms and multispectral classification, place stringent
requircments on clustering programs. These applications involve clustering at lcast thousands of points, detecting
natural clusters in noisy data, and finding clusters in many dimensions. Many clustering procedures developed over
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three decades of pattern recognition research, such as K-means and single linkage, prove effective in simple
situations where the problem size is small or the clusters are compact and well-separated. However, practical
experience applying these procedures to computer vision problems has underscored their limitations. Our research
in cluster analysis grew out of the need to develop efficient and robust natural clustering techniques for large-scale
vision systems.

In 1987 we (Wallace) began experimenting with some new concepts in hierarchical clustering. We investigated
an information static, Gaussian entropy, as an objective function to measure the quality of hierarchical clusterings.
Information measures are not new to cluster analysis, but Gaussian entropy proved very effective in clustering the
real-valued vector data typically found in computer vision applications. We abandoned the standard agglomerative-
hierarchical algorithm because it is not an effective minimization procedure for the Gaussian entropy objective
function. We devised a new minimization procedure, numerical iterative hierarchical clustering (NIHC), to search
through the space of hierarchical clusterings to find one that minimizes Gaussian entropy. NIHC is competitive with
other hierarchical procedures in time and space requirements. Moreover, in our experiments, we compared the
performance of NIHC with seven other hierarchical algorithms. In once case NIHC found natural clusters where the
results of the textbook algorithms were no better than random. In no case did NTHC perform significantly worse
than the other procedures. Also, the clusterings produced by NIHC satisfy a partial optimality condition that does
not generally hold for the output of the agglomerative hierarchical algorithm.

Two parallel versions of the NIHC are running now on commercial machines -- a shared-memory version on a
32-processor Encore Multimax, and a distributed-memory version on a 16-processor Intel IPSC/2 Hypercube. A
serial version is running on a Cray-XMP. Using the NIHC, we have developed a space-time clustering program to
track time-varying clusters. This has been applied to robot road-following using ERIM range and reflectance data,
to color clusters in RGBxy space (color and pixel coordinates) to measure blob motion in an image s2quence, and to
tracking moving obstacles in two-dimensional range data.

2.2, Analysis of Repetitive Texture

We (Hamey, Kanade) have been studying computer analysis of two-dimensional regular repetitive textures in
real-world images [6,7]. Previous efforts in this field have assumed simple grid-like repetitive structure. In
contrast, we assume only locally simple repetitive structure. This local model of repetition leads to an algorithm that
is able to analyze severely distorted repetitive textures, which occur in real-world scenes. #e have demonstrated the
success of this algorithm on a variety of images.

An essential part of describing repetitive textures is extracting the frequency of repetition. However, regular
repetitions admit many alternate frequency descriptions. We define the fundamental frequencies of a repetition as
the two shortest independent vectors between elements of the repetition. The fundamental frequency vectors are the
most perpendicular basis vectors for the repetition, and they correspond to the relative neighborhood graph of the
repetitive pattern. Our algorithm exploits these properties to extract the fundamental frequencies of repetitive
textures.

It is difficult to extract repetition frequency when the element of repetition is also unknown. We propose the
dominant feature assumption as a solution to this problem. Rather than trying to find the unknown repetitive
structure of an unknown texture element, we extract features from the image and rank them according to their
importance (promiinence). The repetitive structure of the most prominent (dominant) features is the desired structure
of the cntire pattern.

We have developed a four-step algorithm for understanding repetitive texture. Our experimental results




demonstrate that this algorithm successfully extracts the structure of even severely distorted repetitions in real-world
images.

3. Geometric Models of Objects and Sensors for Vision
Our research in high-level vision includes geometric modeling, model-based vision, and 5D geometric reasoning.

3.1. The VANTAGE Geometric/Sensor Modeler

Geometric modeling systems allow users 1o create, store, and manipulate models of three-dimensional (3-D) solid
objects. These geometric modeling systems have found many applications in CAD/CAM and robotics areas. One of
the interesting applications is to build a model-based vision system based on a geometric modeling system. The
relevant knowledge of an object for recognition is extracted from the object model in a geometric modeling system
and is then used for recognition by a vision program.

A geometric modeling system represents a three-dimensional object, while a vision program observes a two-
dimensional appearance and thus requires a 2D representation of a 3D object. In addition, model-based vision
systems use various diverse sensors to obtain visual information. The object appearances are determined by the
product of an object model with a sensor detectability, which tells what features the sensor can "see”. Thus, it is
necessary for a geometric modeling system to represent not only an object but also a sensor detectability in order for
the system to be fully used for model-based vision. Suprisingly, however, little research effort has been spent in this
direction, even though some of the early effort in geometric modeling comes from vision applications. This is
probably because the main purpose of geometric modeling systems is to design mechanical objects and the main
concern is how to represent 3D information.

We (Robert, Balakumar, Tkeuchi, Kanade) have been developed the Vantage Lisp-based solid modeling system to
meet this requirement [11, 14, 16]. In particular, we designed 2D symbolic representations and the sensor modeling
module. We also stabilized Vantage throurh extensive use for various purposes such as the automatic generation of
object recognition program and 3D world representation for navigation. We have shipped Vantage to several other
research laboratories.

3.2. Vision Algorithm Compiler

Historically, and even today, most successful model-based vision programs are handwritten -- relevant knowledge
of objects for recognition is extracted from examples of the object, tailored for the particular environment, and
coded into the program by the implementors. If this is done properly, the resulting program is effective and efficient,
but it requires a long development time and many vision experts.

Automatic generation of recognition programs by compilation attempts to automate this process. In particular, it
extracts from the object and sensor models those features that are useful for recognition, and the control sequence
which must be applied to deal with possible variations of the object appearances.

We (Ikeuchi, Hong, Kanade, Chang, Kuno) have been working on designing a geometric compiler, which
automaticaily generates a recognition program from an cbject model [3, 12, 13, 15, 21]. The key techniques in
designing the compiler are: object modelling, sensor modelling, prediction of appearances, strategy generation, and
program generation. For object and sensor modeling in the geometric compiler, we have been using the Vantage
geometric/sensor modeler. We describe geometric and photometric properties of an object using Vantage, and we
have established a method to specify sensor characteristics to Vantage. Based on the geometric and photometric
properties and the sensor characteristics, Vantage predicts the object appearances from various directions under

36




various sensors.

Our geometric compiler uses aspects, topologically equivalent classes of object appearances, as a basic tool for
object recognition. We generate a two-step program to classify one appearance of an object into one of the possible
aspects, and then to determine the precise attitude and position within that aspect. We have established a technique
for the geometric compiler to group the appearances systematically into aspects and then represent them
symbolically. We have also established a technique to predicted ranges of uncertainty of geometric features using
the sensor model. These uncertainty ranges are added to the aspect structures.

We have designed the geometric compiler to generate the aspect classification part of the interpretation tree by
performing recursive sub-divisions of possible aspects [12]. This subdivision is performed by examining
uncerainty ranges of aspect features in order of the smallest computational cost for finding features and determining
threshold values. We represent the resulting classification strategy as a tree structure, which we refer to as an
interpretation tree, whose intermediate nodes correspond to classification stages of aspects and store feature kinds
and values for classifications. Each leaf node contains one particular aspect component. We have also finished the
compiler module for attitude determination [13]. At each leaf node, the compiler examines a model face
corresponding to its aspect component to decide how to define the local coordinate system on it, and stores the
method in the node. At the same time, it calculates the transformation from the local coordinate system to the body
coordinate system. We have also finished designing the program conversion part, to convert recognition strategies
into programs {3}, and we have prepared an object library, a collection of prototypical objects based on object-
oriented programming.

3.3. Framework for Geometric Reasoning for 3-D Vision

Three-dimensional object description and reasoning is critical for many applications of image understanding such
as robot navigation and 3-D change detection. A system for 3-D image understanding must include geometric
reasoning as a primary component, because geometric relationships among object parts are a rich source of
knowledge and constraint for image analysis. Unfortunately, most work in 3-D image understanding has utilized
limited solid or surface models and a fixed order of analyzing image features. Such systems cannot take advantage
of the specific properties or relationships in any given image and therefore perform poorly. Our research is aimed at
developing a more general framework for representing 3-D models and relationships, so that vision systems can use
the specific information contained in each image to its best advantage.

We (Walker, Kanade) have been developing a system called 3DFORM [32], based on the Framekit frame
language defined in Common Lisp. This system has been designed with the following properties. which
differentiate it from past geometric representation systems:

o Extensible models: 3DFORM uses frames to model object parts and geometric relations, which allows
the system to be extended easily to incorporate new features. The frames are arranged in a class
hierarchy, so a new class can be defined by simply specifying the differences from existing classes.

e Flexible control flow: The order of computation is controlled by accessing objects’ attribute values,
which allows the system to perform top-down and bottom-up reasoning as needed. Active procedures
attached to the frames dynamically compute values as they are needed, avoiding unnecessary
computations.

o Incremental representation and reasoning: Objects may be specified incompletely, or by constraints on
them, rather than a full complete description. Constraints may be quantified by EVERY and SOME, so
that even the number of parts of an object need not be fixed in advance. As constraints on an object
hypothesis are evaluated, the object becomes more completely specified. When two partially specified
objects are successfully matched, the result is a single object which combines the constraints of the
original two.
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During the past year, we have extended the matching capabilities of the 3DFORM system. When two objects are
matched, the system determines whether the two objects are compatible, and if the objects are compatible creates a
new object combining the constraints of both. In this way, two partial objects can be combined to create a third
object which is compatible with and more complete than each of the original two. Determining compatibility and
combining constraints from multiple objects is implemented by simply adding the attributes (including relationship
constraints) of one object to the other, and relying on demons in the attribute slots to signal an error if incompatible
attributes are added. If the objects are compatible, the result will be a single object with all the constraints from both
original objects. In addition, if a panicular attribute is constrained to a single value by combining the constraints
from both objects, the value will be automatically computed the next time it is required. This matching process can
be used not only to combine data from multiple views of a single object, but also to combine data from multiple
sensors; to maich a partial description of a sensed object with a previously entered model and determine the pose of
the object; or to combine hypotheses derived separately into a single, more restrictive hypothesis.

Using a generic model of a building as a flat-roofed polyhedron with rectangular walls, we have demonstrated the
matching capability by reading in wire frames (three-dimensional edges and vertices) corresponding to two views of
a single building, forming a building hypothesis for each view, and then matching the two buildings. The same
matching paradigm could be used to match 3D geometric data derived from different senswis, or from the same
sensor at different times.

3.4. Robust Geometric Modeling

Shape, position, orientation, and velocity are all geometric properties, and reasoning about these properties is an
important part of vision and robotics. As much as possible, we wish to automate geometric reasoning by means of
geometric programs. In order that these programs be efficient, we use rounded finite precision arithmetic.
Unfortunately, when we write these programs we find that it is difficult to attain reasonable reliability and almost
impossible to obtain absolute reliability: there always seems to be one more special case on which the program fails.
Theoretical reasons are only no coming to light as to why geometric programs are so much more difficult to make
reliable than purely numerical or purely symbolic programs, but this difficulty is very commonly experienced in
pracuce.

We (Milenkovic, Kanade) have developed techniques for creating robust geometric programs: geometric
programs with absolutely reliable rounded arithmetic implementations (25, 26, 27]. We have focused our research
on the domain of line segments in the plane, but the techniques we have developed have broader applications. The
techniques are based on two principles. First, one should use a malleable representation. Specifically, replace each
line segment with a rubber band curve which can be modified as the computation proceeds to reconcile numeric
error with the symbolic structure. Second, one should keep as much of the representation implicit as possible. In
the case of rubber band curves, their exact shapes are unknown at all stages of the computation. Put together, these
two principles make up the hidden variable method which allows us to generate correct geometric information
without the use of exact arithmetic. A certain amount of error is introduced by the use of rubber band curves, but
this can be made to be a small fraction of the error arising from sensor noise and other measurement errors.

4. Parallel Vision
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4.1. Software and Hardware for Parallel Vision

Much of the parallel vision work at Camegie Mellon centers around the Apply language, a specialized language
for low-level computer vision. We (Webb, Hamey) developed Apply initially as a way of programming the Warp
machine for an important class of image processing algorithms without using W2, the basic language for the
machine. Apply made is possible to develop WEB, a library of about 100 Apply programs for all sorts of low-level
computer vision operations. In turn, the existence of Apply and WEB has made Warp much easier to use, and has
led to interest on the part of other parallel computing groups in implementing Apply on their architecture.

We have worked with several groups in developing Apply implementations. A group at OCE Corporation in the
Netherlands developed an Apply implementation on reconfigurable arrays of transputers; the Apply compiler is
supposed to generate both a transputer program and an optimal configuration of the transputers for the program. At
the University of Leeds, researchers implemented Apply on the Meiko Computing Surface; this implementation of
Apply was recently installed at General Electric Corporate Research and Development Labs in Schenectady. At the
University of Massachusetts at Amherst, an implementation of Apply on the Image Understanding Architectures is
in progress. At Camegie Mellon, the SLAP (scan-line array processor) comnuter has been the target of a successful
Apply port.

We have also extended the functionality of existing Apply implementations. Working with Han Wang of the
University of Leeds, we extended Apply on the Warp and Sun so that it could process images of varying size with a
single program, and also so that it could deal with different options for border processing.

Given the success of Apply for local low-level image processing operations, it is natural to consider whether it
can be extended to allow the computation of global image operations, such as histogram and Hough transform. We
have considered extended Apply to use a divide and conquer programming model for these operations; in a paper in
this workshop we show that such a model is useful, by demonstrating how the second DARPA Image Understanding
benchmark can be implemented using such an extended Apply. We also prove that extending Apply in this way is
generally useful; it is the case that any reversible image procesing operation (which gets the same result if the image
is processed top to bottom or bottom to top) can be computed in this way.

Our experience in implementing the second DARPA Image Understanding benchmark on Warp was very
different from the first benchmark. Because of the software tools we have developed and the maturity of the Warp
hardware and software, it required the ef”.rts of only two people to implement the complete benchmark. With the
new extended Apply, even this effort wculd be significantly reduced.

We have also seen the continued use of our parallel vision work in the robot vehicle work at Camnegie Mellon.
The SCAREF road following algorithm was implemented entirely on Warp. Warp SCARF maintains its own internal
state, and does all calculations necessary to predict the road position; the result is that images are fed in at one end of
the Warp array, and out come road predictions at the other end. The resulting implementation is one or two orders
of magnitude faster than a comparable implementation on the Sun.

4.2. The 2D Machine

Computer vision tasks are characterized by a high demand for computation. The goal of the 2D Machine project
(Chien) is to design an image understanding architecture to meet this computation requirement by taking advantage
of the high processing power provided by parallel machines such as Warp and Nectar [1]. The challenge is to find
the best strategies for mapping data and vision tasks onto underlying parallel architectures. In order to meet this
challenge, we first identify the characteristics of different vision tasks.

Vision processing can be roughly divided into three levels including low-level image processing, mid-level
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feature processing, and high-level object recognition:

o Low-Level Image Processing: Data items are pixels, which are uniformly distributed in the image
space. Operations include simple local or neighborhood operations on a large amount of data. The
inherent parallelism is fine-grained at the pixel level.

® Mid-Level Feature Processing: Data items are 2D features such as points, lines, and regions of which
the distribution in the image space are not uniform. Relations among data items are spatial relationships
such as adjacency, overlapping and containment. Operations on these data items include unitary
operations for computing geometric properties, and binary operations involving spatial relationships.
The potential parallelism is medium-grained at either the feature level or at the level of subsets of
spatially adjacent features.

® High-Level Object Recognition: Data items are natural or cultural objects or subparts of these objects,
which are not uniformly distributed in the image space. Operations include matching between objects
(and their subparts) and possible models. The amount of data items in general is small, but the number
of possible models may be large. The potential parallelism is at the (recognition) task level or at the
level of subsets of the solution space.

The diversity of characteristics in vision tasks dictates several criteria in the design of an image understanding
architecture. In order to cover this diversity, the architecture should:
¢ provide at least three levels of parallelism including fine-grained pixel-level parallelism, large-grained
task-level parallelism, and medium-grained subtask-level parallelism;

e provide different strategies for data partitioning, dynamic data migration, tasks allocation (scheduling)
and load balancing according to the types of data items, the natural of operations, current data
distribution, and task dependency;

» have suitable data structures for spatial operations and for topological and part/subpart relationships;
these data structures should be suitable for data partitioning and data integration as are necessary in a
distributed environment;

e provide low-latency and high bandwidth communication channels for data migration and task
distribution.

To facilitate data partitioning, data migration, and data integration in a distributed environment, we have selected
the frame and the quadtree as the underlying data structures. For task-level parallelism, a task may consist of a
frame and a desired operation which can be sent to any idle processor for processing. However, the frame structure
is not a good data structure for spatial related operations (binary operations in particular) where spatial adjacency (or
locality) is important to efficient processing. The quadtree, K-D tree, and R-tree are more suitable in this case. The
quadtree structure has further advantages in that its regularity facilitates easy partitioning and integration of the data.

Within the framework of our proposed image understanding architecture, we have pursued the issue of distributed
quadtree processing focusing on data partitioning, load balancing and dynamic data migration [4). The results of
this initial effort have been implemented on the Nectar hardware prototype currently in operation at Carnegie
Mellon [1].

5. Vision for Mobile Robot Navigation

5.1. Road-Following by Color Vision
Over the last four years, we have developed ever-more-sophisticated road-following algorithms for the NAVLAB
using clustering of color data. This year, we devveloped two new algorithms: SCARF and UNSCARF.

SCAREF: In 1988, we (Crisman, Thorpe) completed SCARF, our system for Supervised Classification Applied to
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Road Following [5]. SCAREF is the logical continuation of a long chain of road following programs that use color
classification. The first implementation of SCARF in 1986 ran on Sun workstations, with 32 by 30 pixel images, in
about 12 seconds per image. Later implementations of that version ran on the prototype Warp and on production
Warps, with speeds as fast as one image per 4 seconds.

Over the past year and a half, we have upgraded SCARF to use, first, higher resolution images (60 by 64), and,
second, two images to increase dynamic range. This slowed our runs to tens of seconds per image, even on a Warp.

Now, taking advantage of compiler upgrades for the Warp’s W2 language, and doing some code restructuring, we
have reimplemented SCARF on the Warp. Our processing time is now down to 2 seconds per image. We moved
almost all of the code onto the Warp cells themselves. Further, we reduced the number of calls to the Warp per
image from 14 (last year) to 3 (earlier this year) to 1 (now). After initialization, we pass the Warp cells each new
image, and get back only the new road location. All of the system state is saved on the cells from call to call. We
also have debugging versions that can extract classification information for display, but those extra Warp calls and
data movement slow down the system. Current running time is 1 second of Warp time per image.

The full formulation of the probability equation used in classification includes the log of the determinant of each
class. Early implementations of SCARF on the Warp have always avoided logarithms, since there is no log function
in W2, On benign data, this did not cause any problems. But running with the Navlab outside on a snowy day, the
system did not work correctly. In our standard test sequences, each class had approximately the same size
determinant (i.e., the classes had approximately equal variance), so we could safely ignore that term. But on a
snowy day, the “snow” and "road” classes each had very small variance, while the "trees + parked cars + trash
barrel” class had a much larger variance. This imbalance caused improper classifications. We worked with the
Warp group to include a log macro and to compile it into our W2 code. The resulting system performs no better on
most of our images, but dramatically improves performance on snowy days and under similar circumstances.

The resulting system has driven the Navlab many times, along our narrow bicycle path in Schenley Park. The top
speed at which we have run is one meter per second, the length of our test coursc (compared with 20 cm/sec last
year). With the fast processing loop and the complete formulation of probabilities, the vision results are solid.
While vehicle speed has always been a secondary concem of our work, we can now drive at moderate speeds on our
difficult test course, and should be able to use the same system to drive at higher speeds on wider, straighter roads.

UNSCARF: One of our (Crisman, Thorpe) new road detection algorithms for this past year is UNSCAREF, for
UNSupervised Classification Applied to Road Following {5]. A large problem with our early road perception work
was dealing with rapidly changing illumination. If the sun is covered by a cloud, the lighting is diffuse and we can
follow roads with a single camera. If the sun is out, there are problems with camera dynamic range, but our nethods
that use two cameras work. But if the sun is quickly covered or uncovered by clouds, then colors change and
shadows change and the brightness changes. If object appearance differs greatly between successive processed
frames, current methods have a hard time tracking the road.

UNSCAREF places less emphasis on colors and more on shapes. Instead of classifying each pixel according to
statistics from previous images, it groups neighboring pixels using unsupervised clustering methods. We have
found that clustering with 5 parameters (R,G,B and row,col) gives us classes that are both homogeneous in color and
connected in the image. We then piece a road shape together out of those clusters, instead of from individual pixels.
Evaluating candidate roads uses shape cues such as parallel edges, smooth edges, edges the right distance apart, and
so forth. The combination of unsupervised classification and evaluation with shape cues makes UNSCARF tolerant
of the large illumination changes that have given problems to previous systems.
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FERMI: FERMI deals with public highways and roads, that have morc siructure and variation than our Schenley
Park test site (Kluge, Thorpe) [20]. The key to handling diverse roads is explicit modeling of the colors, shapes, and
features of each road type. FERMI has a representation that lists width, maximum curvature, color, surface type,
location of lines, type of shoulders, presence of guard rails, type of adjacent vegetation or soil, illumination
conditions (sunny or cloudy), illumination direction, and so forth. By having many simple experts, one for tracking
each type of feature, we are able to follow many kinds of roads within the same control framework. None of the
individual trackers (edges, lines, color discontinuities, etc.) that we explored in our early work were adequate by
themselves for road following. But by incorporating many of them into a single system, and intelligently selecting
which tracker to use to follow which feature, we expect FERMI to be reliable and flexible. In 1988, FERMI has
been designed and partially constructed, and has driven the Navlab.

5.2. Building Terrain Descriptions from Range Images

We (Hebert, Kweon, Stentz) have made progress in building terrain descriptions from range images in three areas:
terrain descriptions far cross-country navigation of the NAVLAB [8], terrain map building using feature matching
{8, 9], and matching of maps for high-resolution terrain descriptions {10, 22]. A terrain description based on a
polygonal mesh of regions has been successfully used together with a path planner that takes into account the
geometry and kinematics of the NAVLAB. The resulting enables the NAVLAB to navigate through terrain in which
a description in terms of discrete objects is not sufficient. Progress in map building using feature matching includes
the ue= of additional features such as the road edges calculated from reflectance images, and the building of maps
over longer distances. Reliable feature-based map building enabled us to start actively investigating the problem of
using the map built from sensor data for the navigation of a stretch of road previously explored. Since those two
approaches 10 map building produce relatively low resolution maps, we have developed new algorithms to produce
high resolution maps, that maps for which the resolution is on the order of the resolution of the scanner. In addition,
an efticient algorithm that minimizes the distance between maps by a gradient descent technique leads to a better
estimate of the displacement between individual and to a more accurate composite map. Even though these
algorithms are somewhat computation intensive, they represent a promising direction of research for the building of
high-resolution maps.

5.3. Road Following Using Reflectance Images

We (Hebert) have also been developing methods for road following using active reflectance images from the
ERIM laser scanner. Active reflectance images have two characteristics that make them attractive for road-
following applications: First, they are insensitive to outside illumination, that is no shadows are cast by objects in
reflectance images and the influence of the level of ambiant light on the image is minimal (in fact, any program
using reflectance images would work as well under night conditions). Second, each pixel in the reflectance image is
also a range pixel whose position in space can be derived from the geometry of the scanner. This allows us to
compute the position of the edges of the road found in a reflectance image in the vehicle’s 3-D world without any of
the calibration procedures that are typical of the video-based road following algorithms.

Edge detection would be the natural way of finding road edges in grey level images. The nature of the reflectance
data, however, suggests the use of a region-based technique for two reasons: First, the dynamic range of the image is
low, many spurious edges that are of similar strength as the road edges will be found. Second, the intensity of the
road in reflectance images is very stable because it is insensitive to shadows and changes in illumination. This is to
be compared with video images in which the appearance of the road region varies significantly, thus requiring the
use of multiple classes of road and non-road regions. Instead of extracting the road edges directly, a road region
extractor identifies the pixels that are part of the road based on the road location and appearance predicted from a
previous image. This approach to road following has been successfully used for navigation over long stretches of
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road using the NAVLAB [9].
6. Mobile Robot Systems

6.1. Map-Based Navigation

Research on road following and map building leads naturally to the idea of closing the loop by using a map built
from previous observations to guide the navigation on a portion of the world already explored. Such a capability of
map based navigation would enable us to improve the performances of the vehicle in three directions:

e Faster navigation: Perception is typically the bottleneck in autonomous mobile systems because images
have to be processed as often as possible to compensate for the lack of knowledge about the world. If
apriori knowledge of the environment is available from previous observations, perception is needed
only to periodically check that the vehicle stays on the path prescribed by the map. The perception
bottleneck is therefore reduced, thus leading to faster navigation.

* More reliable navigation: Autonomous navigation is unreliable because of the uncertainty associated
with any sensor data and processing. Relying more on a map means relying less on sensor data acquired
during the execution of a navigation plan. Map based navigation should therefore provide more accurate
navigation.

e Simpler perception: A map can provide the expected appearance of the environment at any location.
That includes the expected location of objects, and the expected position and appearance of the road.
This additional knowledge allows for simpler perception processing. ~

Athough map-based navigation algorithms could be used with a man made map (e.g. from surveying), using a
map built from sensor information does not make any assumptions on the amourt of knowledge available to the
system, thus leading to a fully autonomous system. Furthermore, it is difficult to obtain the resolution of a map built
from sensor data by using surveying alone.

Qur (Simon, Heber) auproach to map-based road following proceeds in three steps (9]: computation of the
starting position, path planning in the map, path execution and correction. The first step is needed to avoid
constraining the starting position and heading of the vehicle at the beginning of the traversal of the map to those
used to initiate the map building stage. The position and heading of the vehicle with respect to the map are computed
by matching the features, road edges and objects, observed in an image taken at the starting position with the
features of the map that are predicted to be visible given a rough initial guess of starting position. The matching
algorithm is basically the same as the one used for the map building except that in the current implementation, only

road edges and discrete obstacles are used. The map features are predicted by intersecting the sensor field of view
with the map.

Given the starting position, the second step is to compute a path that follows the road using the map. This step is
the most straightforward in that any path planner that provides for smooth paths can be used. In the current
implementation, the path is computed by dividing the center curve of the road into small segments that are
approximated by a small set of arcs that are later sent to the vehicle’s controller.

Once a path is computed, the vehicle is ready to follow the road based on the map. Ideally, the vehicle should be
able to correctly execute the path without any perception at all. In practice, however, the vehicle will drift away
from the ideal path due to wheel slippage, and the accumulation of small controller errors and numerical errors.
Therefore, the position and heading of the vehicle with respect to the map must be recomputed periodically by
comparing the features that are actually observed while executing the path and the features that are predicted from
the map given the current estimate of the vehicle’s position. The question now is how often should we make a
position correction, that is take an image, extract road edges and objects, and match them with the map, in order to
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stay within reasonable bounds of the original path. This problem is the key to map-based navigation: If the
correcuons are performed too often we are back to the original road following approach and we loose the benefit of
taving a map. If, on the other hand, we do not perform enough co vections along the path, we may drift
significantly far from the nominal path and eventually run off-road. Furthermore, the corrections should be
meaningful in the sense that enough features should be present at the time of the correction to ensure that the ncwly
computed position is indeed closer to the truth than the currently available estimate. Several strategies are possible
to choose the locations at which corrections should be performed. An attractive strategy is to estimate the
uncertainty on the positdon and heading as the vehicle moves, a new correction is requested whenever the
uncertainty reaches a threshold that indicates that the vehicle 1s too far from its nominal path. This approach
guarantees that the distance between the vehicle’s path and the nominal path always lies within preset bounds. It
does not, however, guarantee that the images taken at the time at which a correction is needed contain enough
features of interest. Another possible approach is to make a correction whenever the map predicts that features of
interest may be observed from the current position. In our case, it is important to guarantee that the corrections are
performed when objects are visible, since otherwise the correction would be computed on the basis of the road edges
only and would therefore be ambiguous. A correction is therefore computed whenever at least one object is
predicied 1o be visible from a position along ihe path. Matching the predicted objects and road edges from the map
with the observed road and objects provides an unambiguous new estimate of the vehicle’s position and heading.

The result of the correction calculation is an offset A=(Ax,Ay,A8) between the nominal position and heading and
the actual values at the time the image is taken. This offset must be used to correct the current course of the vehicle.
This 1s achieved by shifting the path that has been executed while the image was being processed by A, by
replanning from the current position as given by the shifted, and by replacing the pending set of motion commands
by this new path.

Experiments with the NAVLAB show that it is possible to use a map to efficiently guide the navigation of an
autonomous vehicle. The main benefit is that considerably fewer images have to be processed while retraversing the
map. For example, a short typical stretch would require seven images to be processed using a map, while it would
reguire at least 25 images to navigate the same stretch at the same speed. The reason for the discrepancy is that even
if the position of the road were computed perfectly from each individual image, the path planner would not have
information far enough in front the vehicle to plan a stable path that is guaranteed to remain on the road. Although
the same results could be obtained by using a map that is entered manually, it is important to note that the
combination of map building from sensor data and map-based navigation results in a fully autonomous system that
can learn its environment and use its new knowledge to navigate through it.

6.2. Path Planning for Off-Road Trave!

Outdoor mobile robots are used in a wide variety of scenarios ranging from those in which the robot operates with
a complete map of its environment and moves between pre-determined goal points to those where the environment
is completely unknown and the robot constructs a map as it explores. Regardless of the particular scenario, all
navigation systems include a basic sense-plan-drive cycle for moving the robot about. The local navigator must
choose the sensing points, plan paths between them, and oversee ihe execution of the robot’s trajectory. To perform
this local navigation, we (Stentz) have developed a new local path-planning method.

A number of constraints must be satisfied. First, sensing points must be selected which enable the robot to
register its position relative to the world or to map new areas. Second, placements (configurations) of the robot in
the environment that will incapacitate it or render it unable v~ locomote must be avoided. Such configurations
include those that bring the robot in contact with other objects in the environment, as has been modeled in traditional
indoor robotics. Outdoor robots face other hazards as well. Configurations that cause the robot to tip over or place




it in situations where it cannot propel itself forward must also be avoided. Third, kinematic constraints must be
taken into consideration. Most robols are not omnidirectional. They cannot travel between two arbitrary
configurations within given bounds. For example, car-like vehicles cannot translate directly sideways. Fourth,
uncertainty in the robot’s position must be handled. This effect ranges from random error in the robot’s control to
gross errors such as wheel slippage. A local planner must account for such uncertainty to avoid collisions and to
guarantee goal attainment.

Traditional approaches to the problem have attempted order the constraints in a hierarchy ranging from most to
least severe. The constraints at the top of the hierarchy are used to plan the robot’s path while those at the bottom
are used to perform local modifications to the path. The problem with this approach is twofold. First, the constraint
precedence can change dynamically as a function of the robot’s environment. Second, there is no guarantee that
local modifications to a planned path will succeed. Thrashing between levels of the hierarchy can result. We have
developed a planner that models all of the constraints in a flat-level system. A single search algorithm is used to
find trajectories, thus avoiding thrashing between levels of the hierarchy.

Since the pose of a car-like mobile robot can be specified using two parameters in position and one in orientation,
the search space is three-dimensional. Searching this space using a dense tesselation is prohibitively expensive;
instead, a recursive space-decomposition algorithm is employed. The planner attempts to plan through large
subspaces (called voxels) of the search space at time, dividing the voxels and planning at a higher resolution as
needed. All constraints in the system (environmental, kinematic, goal, and uncertainty) are expressed as functional
inequalities. The SUP-INF method is applied to the inequalities to determine whether the constraint is satisfied for
all configurations in the voxel, no configurations, or some configurations. For a given voxel, the planner first
computes the maximum amount of uncertainty in the three configuration parameters that could be generated by a
trajectory passing anywhere through the voxel. The voxel is then "expanded” by this uncertainty and is tested for
eavironmeantai admassibility. If all configurations are inadmissible, the voxel is removed from further consideration.
If a mixture exists, planning continues through the voxel at a higher resolution.

If all configurations within are admissible, the voxel is tested for goal attainment. If all configurations are in the
goal space, the planner terminates with success. If a mixture exists, the planning continues at a higher resolution. If
no configurations are in the goal set, the planner determines the set of points on the faces of the voxel through which
the robot can leave the voxel, taking kinematic constraints into consideration. This set of points is constructed
recursively and is represented using a quadtree.

The power of this technique is derived from its ability identify large subspaces through which planning can
proceed quickly, taking uncertainty and goal attainment into account. The planner avoids testing individual
trajectories for kinematic soundness by propagating "bundles” of trajectories through the space in a single operation.
This system was implemented and tested on the NAVLAB driving in rough terrain.

6.3. The Autonomous Planetary Rover

The Autonomous Planetary Rover project, sponsored by NASA, is closely related to our NAVLAB research. In
this project, we (Krotkov, Kweon, Hebert, Balakumar, Caillas) are building a a walking vehicle called the Ambler,
which uses six orthogonal legs to traverse rugged terrain that wheeled vehicles can not negotiate easily [2]. The
Ambler faces many of the same problems as other mobile robots, but it must also operate in rugged environments
like those on Mars, at hazardous waste sites, on ocean floors, and in mines.

Perception research in this project focuses on techniques to robustly construct multi-resolution elevation maps
from range imagery. The approach is to use a variety of sensors to construct the multiple resolution terrain




representations necessary for tasks including locomotion, navigation, and sample acquisition. Other research aims
to develop innovative gaits for legged locomotion, and to develp a centralized task control architecture io integrate
the perception, planning, and control algorithms. Currently, we are experimenting with integrated systems using
two testbeds: a full-scale leg, and a wheeled mobile manipulator.
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Progress in Computer Vision at the University of
Massachusetts!

Allen R. Hanson and Edward M. Riseman
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ABSTRACT

This rcport summarize progress in image understanding rescarch at the University of
Massachusetis over the past year. Many of the individual efforts discussed in the paper are
further developed in other papers in this proceedings. The summary is organized into
several areas:

I. Autonomous Vehicle Navigation
II. Motion Processing

[IT. Knowledge-Based Interpretation
IV. Image Understanding Architecture

The research program in computer vision at UMass has as one of its goals the integration of
a diverse set of research efforts into a system that is ultimately intended to achieve real-
time image interpretation in a variety of vision applications. A highlight of our recent
research effort is the initial integration of a perceptually-based navigation svstem for our
lccal mobile robot; this work is represented in four odier papers in this proceedings.

I, AUTONOMQUS VEHICLE NAVIGATION
I.1. Mobile Robot Project

The UMass Mobile Robot project is investigating the problem of enabling a mobile
automaton to navigate intelligently through indoor and outdoor environments. At the
foundation of our work is the premise that higher-level vision beyond the first stages of
sensory processing is needed for perceptual control of the robot. In particular the system
will greatly bcnefit from, and in many cases require, the use of knowledge and modzsls of
objects in the environment.

This project is discussed in several papers in this proceedings: our approach to world
modeling, pianning, and primitive task execution are presented in Fennema et al (Fennema,
Hanson et al. 1989); the world model is developed in a solid modelling package, Geometer,
described in (Connolly and Weiss 1989); mechanisms for optimal 2D model matching, used to
locate landmarks derived from the world model and an estimate of the robot's current
position, are discussed in (Beveridge, Weiss et al. 1989b); and methods for determining the
pose of the robot from the matches are developed in (Kumar 1989).

In the early phases of this research, we wish to balance generality with setting sufficient
constraints on the initial research goals to be achievable. Therefore, the experiments focus
on robust goal-oriented navigation through a partially-modeled, unchanging environment
which does not include any unmodeled obstacles. Later experiments will soften these

IThis work was supported in part by the Defense Advanced Research Projects Agency under
contract numbers F30602-87-C-0140, DACA76-85-C-0008, and DACA76-86-C-0015, and by the
National Science Foundaiion under grant number DCR-8500332.
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constraints  to deal with unmodeled or moving objects. as well as learning in  partially
modeled or new environments.

1.2, Implementation on a Multiprocessor

Mobile robot navigation is a computationally intensive activity. Onec approach to achieving
rcal-time  navigation that we are investigating involves the use of a shared-memory
mu'tiprocessor  (Sequent  Symmetry). A C-based language called RS (Pocock ) has been
developed for control of a set of real-time cooperative processes, and it has been ported to
the Sequent.  Similarly, a group of about ten high level modules involved in the navigation
systeim are alse being ported.

The near-term goal of this cffort is to reproduce the experimental capability of navigating
in a modeled environment.  Here, the systems issues arc paramount and issues of scheduling
limited resources with hard real-time constraints is our research focus. We hope o
demonstrate  the muliiprocesser version of mobile robot navigation by carly Fall, 1989,

) N sSIN

A major arca of rescarch in our laboratory is the analysis of sequences of images derived
from a moving scnso:. The cenvironments that we are cexamining include indoor hallway
and room scenes, as well as outdoor scenes of the UMass campus. The goals of this work
include the recovery of scnsor motion decomposed into its translational and rotational
compenents. the recovery of environmental depth of key surfaces and objects, and the
detection of independently moving objects and, if possible, their motion paramecters.

1.1, Stereoscopic Motion Analysis and the Detection of Discontinuities

Onc of the most important problems in sterco and motion processing is the recovery of
depth and motion boundarics. A number of algorithms for computing optic flow make a
clobal smoothness assumption that tends to unnaturally smooth across depth and motion
discontinuitics. and this makes later detection of these boundaries very difficult.  On the
other hand, knowledge of these discontinuitics is very important for the flow and disparity
computations to be correct, cspecially at occlusion boundaries.

Onc approach to this problem is to intcgralc motion and sterco data.  (Balasubramanyam
1989y uscs information in both the stcrco and motion scquences at two timc instances 1o
define a measurc of confidence in the presence of motion and depth discontinuities.  This
measurc can be applied carly, prior to the full computation of flow and disparity ficlds. The
gencral idea is to usc coarse disparity and flow estimates from hierarchical correlation
processes (Anandan 1989) to locatc and label depth and motion discontinuitics; smoothing is
then inhibited across these boundarics. Discontinuitics that arc continuous (i.c. unbroken)
in the other dimension are favored. Initial results arc presented on both synthetic and real
sterco-motion  imagery.

11.2. Smoothness Constraints for Optic Flow and Surface Reconstruction

Snyder (Snyder 1989) has developed a theorctical analysis of smoothness constraints  that s

used in the computation of optic flow and surface rcconstruction. It is derived from a
mathematical foundation that lends insight 1o the heuristic justification of other
smoothncss  constraints. Under scveral simple assumptions he derives the most general

possible smoothness constraint, which turns out to be quadratic in the first derivatives of
the flow ficld, and quadratic in the first and sccond derivatives of the grey-level image
intensity  function. All the best-known smoothness constraints are  special cases of  this
general form. and the relationship to a few ar examined.




1.3, 3D Interpretation of Rotational Motion from Image Trajectories

The research o©f Sawhney and Oliensis (Sawhney and Oliensis 1989) addresses the problem of
discovering the motion parameters of indcpendently moving objects in  their natural
coordinate system. This paper focuses on analyzing an cxtended time sequence of images of

an object rotating uniformly around an axis of arbitrary location and orieniation. It
demonstrates how the abstraction of continuous descriptions of multi-frame data can lead to
the recovery of scenc motion and structure. Image traces of 3D feature points are

generated from image point correspondences over a sequence of frames. These traces arc
described by continuous curves that are obtained by fitting conic arcs to the set of points.
The goal is motion-based grouping of image traces to provide constraints (that are
unavailable in only a few frames) sufficient to extract the motion parameters of
indcpendently immoving objects in their natural coordinate system.

I1.4. A Motion Data Set from the ALV

Motion analysis has rcmained an extremaely difficult research area. One of the difficulties
has been the lack of motion data with ground truth of known accurucy. In particular, this
sort of data has not been collected for rouot vehicles operating under realistic conditions in
outdoor environments. Thus, the proper scientific evaluation of motion algorithms
intended for practical application has been impossible.

In response to this gencral problem, our group decided to collect a reasonably large data sect
from the ALV (Dutta, Manmatha ct al. 1989a; Dutta, Manmatha et al. 1989b) Motion
sequences of about 30 frames cach were collected at five different outdoor sites with
different road surfaces, including on-road, dirt-road, and off-road scenarios, Data from the
video camera, laser range finder, and land navigation system were recorded simultancously
under stop-and-shoot and move-and-shoot scenarios.  Ground truth data was obtained using
traditional surveying methods. The data is being made available to the general community
and can be obtaincd by ccmmunicating with Ms. Valeric Cohen at UMass (E-mail address is
VCohen@ CS.UMass.EDU).

N ) b il 1
I1.1. New Schema system

Rescarch in knowledge-uirected vision has begun to focus on two new goals. The first is to
build a control system for vision that is provably ncar-optimal under certain assumptions.
The <2cond is to use machine lcarning techniques to assume part of the role of the
Lnowledge engineer.  Work is underway on the Schema System II which is designed to
achieve both of these goals.

Previous rescarch with the Schema System (Draper, Brolio et al. 1989) centered around the
rcalization that different interpretation tcchniques are necded to  rccognize different
objects.  The process of finding an automobile in an image is not the samc as finding a road
or a trecc. The problem has always been how to combinec multiple recognition techniques
into a single, coherent system. The Schema System I approaches this problem by viewing
object recognition as scarch through the space of knowledge states.  The general ideca is to
usc a compilc-time analysis to trace alt possible paths through knowledge space in order to
find thc most cfficient routes.

This framecwork is being used for lcarning information that would othcrwisc have to be
provided by a “"knowledge cngincer.” The system may be able to Icarn the expected cost of
cach knowledge source (KS) and the likelihood of cach possible KL esult to climinate the
nced for user-defined control strategics.  The system may also be able to learn which objiect-
specific combinations of  vidence allow the presence of an object to be inferred.
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eliminating the need for user supplied confidence mapping functions. The final phase will
address acquiring new object descriptions by learning new knowledge sources.

111.2. Perceptual Organization
I1.2.1. Perceptual Organization of Curved Lines

Image curves often correspond to the bounding contours of objects as they appear in the
image and provide important structural 3D information. In most cases, however, curves do
not appear as coherent events in the image and must be reconstructed from fragments
obtained from low level processes. Dolan (Dolan and Weiss 1989) is developing a system
which exploits principles of perceptual organization, such as proximity and good
continuation, to build multi-scale symbolic descriptions of co-curving or curvilinear image
structure.

Two primitive geometric descriptors of image structure arc employed (straight lines and
conic splines) to describe the image structures of interest: collinearities, smooth curves,
inflections, corners, and cusps. In order to manage the computational complexity inherent
in the organization process, the system follows the iterative linking, grouping, and
replacement paradigm developed by Boldt et al (Boldt and Weiss 1987; Weiss and Boldt 1986;
Weiss, Hanson et al. 1985) The image primitives from which larger structures are built are
unit tangents obtained by finding zero-crossings of the Laplacian and computing the local
orientation of each edge point from the local gradient. Preliminary experimental results
from this system may be found in (Dolan and Weiss 1989).

I11.2.2. Organizing Surface Boundaries

The ability to find sets of points or lines which belong to a single object or define a single
surface is extremely important in computer vision. For example, Williams and Hanson
(Williams and Hanson 1988) show that when two or more image points are approximately
equidistant in depth (which is often the case when they belong to a single object whose
extent in depth is small relative to its distance to the camera) then the distance to those
points (and therefore the object) can be accurately and reliably recovered. Similarly, the
formidable combinatorics inherent in matching 3-D models to image data can only be
controlled when there is prior evidence that several points or lines belong to a single
object (Beveridge, Weiss et al. 1989b; Burns 1987; Burns and Kitchen 1988). Williams is
developing a system for the perceptual organization of surface boundaries which exploits
Gestalt grouping principles such as proximity, similarity, good continuity, convexity and
symmetry.

Our view is that the goal of perceptual organization is not to assert surface boundaries in
the presence of "noise”, but rather to assert surface boundaries in the presence of other
potentially occluding surfaccs. The process of explaining an input set of linc segments as
the projections of boundaries of opaque surfaces at different depths begins by the insertion
of virtual lines and possible vertices corresponding to potential organizations. For each
member of this augmented line set, a set of constraints (derived from the physical
properties of surfaces) on the role of that line in the final interpretation are asserted.

We envision this constructive or problem posing stage as being followed by an optimization
or "problem answering” stage. The optimization problem consists of a linear or quadratic
objective function subject to lincar constraints. Each virtual line and vertex will either be
promoted to a visible surface boundary, a hidden surface boundary or be dcleted. As a
natural side effect, wherever possible, the sign of occlusion will be determined. This aspect
of the work, if successful, is tantamount to figurc-ground segregation, and has important
implications for obstacle avoidance in robotics and for the enforcement of smoothness
constraints for crecation of densc depth maps and optical flow ficlds.
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I11.3. 2D Model Matching

An important problem in model-driven 3D interpretation is hLow o use approximate
knowledge of the location and orientation of the camera, models of objects in the
environment, and the results of low-level vision to determine the image-to-modeci
correspondence.  The approach we have taken is to separate 2D model-to-image matching
from the determination of the 3D pose parameters (see Section [I1.4)

Beveridge (Beveridge, Weiss ¢t al. 1989a; Beveridge, Weiss et al. 1989b) assumes that a 2D
model has been supplied with rough constraints on its image position (e.g. via an
approximate 3D location in a modeled environment). This substantially reduces the scarch
space of possible model-image line correspondences. The goal here is to determine
corrcspondences betwecen model and data lines such that an optimized spatial fit will
produce the lowest match error. The search must be carried out across the space of possible
line correspondences and this involves dealing with the complexities of grouping
fragmented data, and missing or erroncous lines. The rotation and translation of the model
that minimizes ihe crror in spatial fit for a given set of line correspondences 5 computed
via a closed-forn. solution. Interesting experimental results are achieved on images f{rom
our mobile robot domain.

I11.4. 3D Pose refinement

Kumar (Kumar 1989) has developed an optimization technique for finding the 3D camera
pose given a set of correspondences between 3D model lines and 2D image lines. The 3D pose
is given by the rotation and translation matrices which map the world coordinate system to
the camecra coordinate system. Using the output of the system described in Section 111.3,
these algorithms allow updating of the mobile robot position via landmark recognition..

The approach is based on the constraints developed by Liu et al (Liu, Huang et al. 1988), but
differs in two significant ways. First, rotation and translation are solved for
simultaneously, which makes more effective use of the constraints and is more robust in
the presence of noise. Second, the nonlinear least-squares optimization algorithm used to
solve for rotation and translation is adapted from Horn (Horn 1987); Hom's technique
provides much better convergence properties than does Liu et al's solution method based on
Euler angles (Kumar 1989).

IV, IMA NDERSTANDING ARCHITECTUR
IV.1. Image Understanding Benchmark

The sccond DARPA vision benchmark represents an integrated vision task across a range of
typical vision processing (Weems, Riseman et al. 1988)  Released in March 1988, the
integrated benchmark involves processing from the sensory level, through intermediate
pracescing of symbolic tokens, to matching of data against a set of models, and finally
verification of the hypothesized model in a top-down manner. A scquential solution to the
benchmark was written at UMass and verified by the University of Maryland.

The benchmark was widely distributed and in October 1988, UMass hosted a workshop in
Avon, Connecticut to discuss the results. Representatives werc present from the Darpa TU
community, as well as from groups who implemented the benchmark on different
machines.  All of thc architectures from the Strategic Computing program that arc typically
considered for vision applications were involved in the exercise, including the Warp, the
Connection Machine, and the IUA (thc Image Understanding Architecture). In addition, the
benchmark was implemented on the Sun-3 and Sun-4, the Scquent Symmctry 81, Intel iPSC-
2, Aspcx ASP, and the Alliant FX-80. The results of this workshop are presented in (Weems,
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Riseman et al. 1989) in this proceedings.
IV.2.  Status of IUA Project

The Image Understanding Architecture cffort focussed on three main areas: completion of
the IUA prototype with Hughes Research Labs; extensions to the IUA software simulator,
and implementation of the DARPA Benchmark on the TUA simulator.

At the hardware level, progress towards completion of the IUA prototype included redesign
of the feedback concentrator chip (for the associative functions in the CAAPP array),
rcsubmission of the ICAP communication chips after a failed fabrication run, redesign and
resubmission of the 64 processor CAAPP test chips (fabrication was delayed over six months
duc to vendor problems), and the design of an I/O subsystem (by Hughes). After several
alternatives were considered, a decision was made to use commercially available
components to construct the system controller. The first prototype board is expecied to be
delivered to UMass from the Hughes Research Labs in August, 1989.

At the software level, major changes and extension were made to the IUA simulator. It was
ported to the Sun-3 system, integrated with the Sun windowing environment, and its
interactive graphical capabilities were substantially enhanced. A full ICAP simulator was
developed and merged with the CAAPP simulator to provide two-level simulation
capabilitics.  This was then ported to the Sequent Symmetry multiprocessor and enlarged to
a full sized (51.x512) CAAPP and a 4096 processor ICAP. Unfortunately, memory limitations
on the Sequent limited useful simulations to a 16 processor ICAP configuration, In addition,
numerous improvements were made to the simulator at the basic code level and a number of
vision algorithms werc coded and tested.

Finally, a major effort to program the benchmark on the IUA simulator was successfully

completed and reported as part of the Avon conference discussed earlier. The IUA
implementation of the benchmark ran in approximately 80 msecs on the simulator.
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MIT PROGRESS IN UNDERSTANDING IMAGES

T. Poggio and the staff
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139

ABSTRACT

Our program in Image Understanding has continued to focus on three main projects — the Vision Machine,
object recognition and autonomous navigation -, but it has also covered a wide range of other topics from early
vision modules to analog VLSI circuits for vision and theoretical work on the problem of learning. The first
project ~ a parallel Vision Machine - has the goal of developing a system for integrating early vision modules
and computing a robust description of the discontinuities of the surfaces and of their physical properties that
can be used for recognition tasks. During this last year, we have interfaced the outpul of our integration stage
with a parallel model-based recognition algorithm. The second project consists of several approaches to visual
recognition. New theorelical results have been oblained and new systems have been implemented. In addition
lo these main themes, we have also worked on the computation and the use of motion, photogrammelry, new
theoretical approaches to shape-from-shading, qualilative stereo vision, analog VLSI circuits and learning.

1 Introduction

We will briefly describe our various projects in Image Understanding. Several of them are discussed in more
detail 1n other papers in these Proceedings and in those cases we will simply have an appropriate pointer.

2 The Vision Machine

As we described last year in a separate paper, the Vision Machine system integrates several vision cues to
achieve high performance in unstructured environments, mainly for recognition tasks. It is also a tool for
testing our theoretical progress in vision algorithms, their parallel implementation and their integration. The
Vision Machine at presents consists of a movable two-camera Eye-Head system - the input device - and a 8K
CM2. We are improving the parallel early vision algorithms which compute edge detection, stereo, motion.
texture and surface color in close to real-time. The integration stage is based on the technique of coupled
Markov Random Field models, and leads to a cartoon-like map of the discontinuities in the scene, with a
partial labeling of the brightness edges in terms of their physical origin. In the last year, we have interfaced
the output of our integration stage with a parallel model-based recognition algorithm.

2.1 The Vision Machine System

The present organization of the sys’»m is shown in Figure 1. The image(s) are processed through
independent algorithms or modules corresponding to different visual cues. The full integration scheme -
not yet fully implemented - involves finding the various types of physical discontinuities in the surfaces -
depth discontinuities (extremal edges and bladcs), orientation discontinuities, specular edges, albedo edges (or
marks). shadow edges — and coupling them with each other and back to the discontinuities in the visual cues,
as illustrated in Figure 1. The output of the system is a set of labeled discontinuities of the surfaces around
the viewer. Thus the scheine - an instance of inverse optics - computes surface properties, that is attributes of
the physical world and not anymore of the images. Notice that we attempt to find discontinuities in surface
properties and therefore qualitative surface properties: the inverse optics paradigm does not imply that
physical properties of the surfaces, such as depth or reflectance, should be extracted preciscly, everyuwhere.
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Figure 1: Overall organization of the Vision Machine.

These discontinuities, taken together, represent a “cartoon” of the original scene which can be used for
recognition and navigation (along with, if needed, interpolated depth, motion, texture and color fields). As
vet we did not integrate our ongoing work on grouping in the Vision Machine. We expect to use a saliency
operation on the output of the edge detection process possibly before the use of intensity edges by the MRF
stage. The grouping based on T-junctions (Beymer, in preparation) should take place on the intensity edges
at the same level as the MRF stage. Initial work in recognition has been integrated in the system. The
Vision Machine has been demonstrated working form images to recognition through the integration of visual
cues.
In the following, we will only sketch the main updates to last year’s paper on the Vision Machine [13].

2.2 The Connection Machine

The new version of the Connection Machine (CM2) that we have now is a small (8K processors) configuration.
The main differences with respect to the CM1 are (a) 64k bits memory per processor and (b) a floating point
arithmetic accelerator, shared among 16 processors.

2.3 The Integration Stage and ”deterministic” MRF

Recent work by Geiger and Girosi, based on mean-field techniques from statistical physics, has clarified
the role of various parameters in the MRF technique that we use for integration and has led to interesting
deterministic approximations of the stochastic procedures. These schemes have a much higher speed than
the Montecarlo schemes we used so far, while promising similar performance. The work is outlined in these
Proceedings. A similar deterministic sheme was developed recently by Hurlbert and Poggio to solve a specific
integration problem - the integration of color with intensity edges.

2.3.1 A network for image segmentation using color

The goal of segmentation algorithms for color is to find boundaries between regions of different surface
spectral reflectances and to spread uniform colors within them, without explicitly requiring the colors to be
constant under changes in illumination. Hurlbert and Poggio [22] use color labels that are analogous to the
('IE chromaticity coordinates z and y. Under the single source assumption, they change across space only
when the surface spectral reflectance changes, except when strong specularities ar- present. The color edges
themselves are localised with the help of luminance edges, by analogy with psychophysics of segmentation
and filling-in.




Surfaces are assumed to reflect light according to the neufral-interface-reflection model. In this model
[30] [33]. the image irradiance I{x,y, A} is the sum of iwo components, the surface reflection and the body
reflection:

I(z,y.A) = L(x(x.y), Ma(r, A)g(8(r)) + bh(&(r))],

where A labels wavelength and r(z, y) is the point on the 3D surface to which the image coordinates (x,y)
correspond. L(r(x.y),A) is the illumination on the surface. a(r, ) is the spectral reflectance factor of the
body reflection component and g(é(r)) its magnitude, which depends on the viewing geometry parameters
lumped together in &(r). The spectral reflectance tactor of the specular, or surface reflection, component
b is assumed to be constant with respect to A, as is true for inhomcgeneous materials such as paints and
plastics. For most materials, the magnitude of the specular component 4 depends strongly on the viewing
geometry. Using the single source assumption, we may factor the illumination L into separate spatial and
spectral components (L(r,A) = L(r)e(A)). Multiplying I by the spectral sensitivities of the color sensors
i = 1.2.3 and integrating over wavelength yields the triplet of color values (R, G, B). where

R=1I%z,y) = L(x(z, y))(a®(x(z,y))g(8) + b7R(6))

and so forth and where the a* and & are the reflectance factors i1. the spectral channels defined by the
sensor spectral sensitivities.
We define the hues v and v as

T R+G+B

and

N S
R+G+ B

at each pixel.

In Lambertian reflection, the specular reflectance facior ¢ i1s zero. In this case, v and v are piecewise
constant: they change in the image only when the a'(z,y) change. Thus u or v mark discontinuities in
the surface spectral reilectance function, e.g they mark material boundaries. Conversely, image regions of
coustant u correspond to regions of constant surface color. Across specularities, u in general changes but
often not much. Thus one approach to the segmentation problem is to find regions of “constant™ u and their
boundaries. The difficulty with this approach is that real u data are noisy and unreliable: u is the quotient of
numbers that are not only noisy themselves but also, at least for biological photosensor spectral sensitivities.
very close to one another. The goals of segmentation algorithms are therefore to enhance discontinuitics
in u and, within the regions marked by the discontinuities, to smoothe over the noise and fill in the data
where they are unreliable. One method is to regularize - to eliminate the noise and fill in the data, while
preserving the discontinuities. Using an algorithm based on Markov Random Field techniques, we have
obtained encouraging results on real images [43]. The MRF technique exploits the constraint that u should
be piecewise constant within the discontinuity contours and uses image brightness edges as guides in finding
the contours. An alternative to the MRF approach is very similar to the deterministic schemes obtained by
Geiger and Girosi and consists of an averaging scheme that simply replaces the value of each pixel in the hue
image with the average of its local surround, iterating many times over the whole image. The algorithm takes
as input the hue image (either the u-image or the v-image) and one or two edge images, either luminance
edges alone. or luminance edges plus u or v edges, or u edges plus v edges. The edge images are obtained for
mstance by performing Canny edge detection. On each iteration, the value at each pixel in the hue image
is replaced by the average of its value and those in its contributing neighborhood. A neighboring pixel is
allowed to contribute if (i) it is one of the four pixels sharing a full border with the central pixel (ii) it shares
the same edge label with the central pixel in all input edge images (iii) its value is non-zero and (iv) its
value is within a fixed range of the central pixel value. The last requirement sunply reinforces the edge label
requirement when a hue image serves as an input edge image - the edge label requirement allows only those
pixels that lie on the same side of an edge to he averaged, while the other insures that only those pixels with
sitnilar hues are averaged.




More formally
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where C"(h};) is the set of N(C™") pixels among the next neighbors of #,; that differ from &7 less
than a specified amount and are not crossed by an edge in the edge map(s) (on the assumption that the
pixel (i.j) does not belong to an edge). The iteration of this operator is similar to nonlinear diffusion
and to discontinuous regularization of the type discussed by Blake and Zisserman, Geman and Geman and
Marroquin [35] [4] [L1]. The iterative scheme of the above equation can be derived from minimization via
gradient descent of the energy function

E=YEi,

with
Eij =0 =digy j))V(hij hig1 )+ (1 = di j+ )V (hij,ohij41)
H(I = diy )V (hig hic;)+ (1 —di o)V (hij higoa),
where V(r,y) = V(2 —y) is a quadratic potential ar. - and constant for |r —y| above a certain value.
A simple gradient scheme finds the stationary value of h u: . .lving iteratively
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With the appropriate value of a one finds exactly the average scheme we use

h;';'l =< h>c

where < h > means average over the system of neighborhoods C, defined earlier and the iterations
should respect the underlying system of cliques and their chromatic number [36].

Notice that our schemme is a regularization scheme that takes into account discontinuities and uses the
data only as initial valyes for the iteration scheme. If data are taken into account in the usual way (that is
equivalent to the assuynption of an observation model which consists of gaussian additive noise) we have

'

' Rt =< h>¢ —k(h}?; = hY ;)

where h° = wu are the hue data. In the latter scheme, the resulting “surface” is a generalized spline.
In the former scheme we expect that the algorithm will provide asymptotically piecewise constant regions
bound by disconiinuities.

The local averaging smoothes noise in the hue values and fills in with uniform hue regions marked by
the edge inputs. On images with shading but without strong specularities. the algorithm performs a clean
segmentation nto regions of different hues.

2.4 Labeling the physical origin of edges: computing qualitative surface at-
tributes

Physical Discontmuities

We classify edges according to the following physical events: discontinuities in surface properties. called
mark or albedo edges (e.g.. changes in the color of the surface); discontinuities in the orientation of the
surface patch. called orientation edges (e.g.. an edge in a polyhedron); discontinuities in the illumination,
catlel shadow edges: occluding boundaries, which are discontinuities in the object space (a different object);
and specular discontiniities, which exist for non-Lambertian objects.




Integration via Labeling with a hinear classifier

Gamble. Geiger. Weinshall and Poggio have implemented a part of the general scheme. More specifically,
they have used a simple linear classifier to label edges at pixels where there exists an intensity discontinuity,
using the output of the line process associated with each low-level vision module. They use the fact that
tiie modules” discontinuities are aligned, having being integrated with the intensity edges before, so that the
nonexistence of a module discontinuity at a pixel is meaningful. The linear classifier corresponds to a linear
network where each output unit is a weighted linear combination of its inputs (for a similar application to
a problem of color vision, see [23]). The input to the network is a pixel where there exists an intensity edge
and that feeds a set of qualitatively different input units. The output is a real value vector of labels’ support.

In the system we have so far implemented, we achieve a rather restricted integration, since each module
is integrated only with the intensity module, and labeling is done via a simple linear classifier only. It is stiil
unclear how successfull labeling can be, using only local information.

2.5 Saliency, grouping and segmentation

A grouping and segmentation module working on the output of the edge detection module is an important
part of a vision system: humans can deal with monocular, still, black and white pictures devoid of stereo.
motion and color. We are now developing techniques to find salient edges, to group them and thereby
segment the image. These algorithms have not been integrated yet in the Vision Machine system.

Saltency Measure

Edge maps produced by most current edge detectors are cluttered with edge responses and may have
edges caused by noise. This creates difficulties for higher level processing, since the combinatorics of these
algorithms often depends on the number of edge primitives being examined. What is needed is a technique to
focus attention on the "important™ edges in o scene. We call such attention focusing techniques that measure
the "importance” of an edge saliency measures. Shimon Ullman [58] has proposed two different kinds of
saliency measures: local saliency and structural saliency. An edge’s local saliency is entirely determined by
features of that edge alone. For example, an edge’s length, its average gradient magnitude, or the color of
a bounding region serve as local saliency measures. Structural saliency refers to more global properties of
an edge - its relationships with other edges. Although two edges may not be locally salient, if there is a
“nonaccidental” relationship between them, then the structure becomes salient. Examples of "nonaccidental”
relationships, as pointed out by David Lowe, include collinearity, parallelism, and symmnietry, among other
things.

David Beymer has investigated local saliency measures applied to the output of the Canny edge detector.
The edge features we have considered include curvature, edge length, and gradient magnitude. The measure
favors those edges that have low average curvature, long length, and a high gradient magnitude. The saliency
measure eliminates many of the edges due to noise and many of the unimportant edges. The edges that
remain are often the long, smooth boundaries of objects and significant intensity changes inside the objects.
We expect that the salient edges will help higher level processes such as grouping (structural saliency) and
mode! based recognition by allowing them to focus attention on regions of an image bounded by salient
edpes.

T Junctions: Their Detection and U'se in Grouping

In cluttered imagery. imagery containiug many objects occluding oune another, it is important to group
together pieces of the image that come from the same object. In particular. given an edge map produced
by the Canny edge detector. we would like to select and group together the edges from a particular object
before running high level recognition algorithms on the edge data. This grouping stage helps reduce the
combimataorics of the higher level stages, as they are not forced to consider false edge groupings as objects.
Considering how ocelusion cues can be used in grouping. we have investigated the detection of T junction -
and grouping rules ansing from the pairing of T junctions. When one object partially occludes another
i a cluttered seene.a T jnnetion s formed bhetween the two objects. Beymer has developed algorithn -
for detecting T junctions as a postprocessing step to the Canny edge detector. The Canny edge detector,
winle very good at detecting edges, is particularly bad at detecting junctions. Indeed. it was designed to
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detect one dimensional events. This one dimensional characterization of the image breaks down at junctions
since locally there are three or more surfaces in the image. We have investigated how one could use edge
curvature and region properties of the image to reconstruct these "broken™ junctions. Often the way Canny
will fail at junctions is that one of the three curves belonging to the junction will be broken off from the
other two. Beymer has modified an existing algorithm asnd achieved promisisng results in restoring broken
T junctions. Once located in the image, T junctions are represented by three edges, the left part of the top
horizontal edge of the T, the right part, and the stem. The top horizontal edges are the occluding cdges and
the vertical stem is the occluded edge. Given the junctions, we can start pairing T junctions and grouping
edge fragments. If we assume that all objects in the scene fit entirely within the image boundaries, all T
junctions must be matched up with a "brother” T junction along the occluded edge joining them. This
constraint helps to classify T junctions, making their detection more robust. Once a T junction is matched
with its brother, we know exactly which edge is the occluded edge (it is the edge that is traced to reach the
brother). so we can group the two occluding edges together. The occluded edge will be extended, starting a
search process to bridge the occluding object. Here we are looking for an opposing T junction on the other
side of the occluding object. If such a pair of opposing Ts is found, we can group together the occluded
edges of the respective T junctions. The application of these grouping rules for occluding and occluded edges
often product closed contours when the Canny edges are fairly good. For each closed contour, we can form
a closed region corresponding to an object or object part in the iniage. Finally, the T junctions are used to
calculate relative depth information among the regions. In the end, the system can divide the image into
regions corresponding to objects and give their relative depths. Beymer currently has the system working
on "toy” images made from construction paper cutouts.

2.6 Recognition in the Vision Machine

The output of the integration stage provides a set of edges labeled in terms of physical discontinuities of
the surface properties. They represent a good input to a model-based recognition algorithm like the ones
described by Dan Huttenlocher and by Todd Cass in the 88 1U Proceedings. In particular, we have interfacing
the Vision Machine, as implemented so far, with the Cass algorithm. We have used only discontinuities for
recognition; later we will use also the information provided by the MRFs on the surface properties between
discontinuities.

\We have more ambitious goals for the recognition stage of the Vision Machine. In an unconstrained
environment the library of models that a system with human-level performance requires is in the order of
many thousands. Thus, the ability to learn from examples appears to be essential for the achievement of
high performance in real-world recognition tasks. Learning the models becomes then a primary concern in
developing a recognition system for the Vision Machine. This has not been the case in other approaches of
the last few years, mainly motivated by a robotic framework, some of which will be discussed in section 3.

2.6.1 Learning in a three-stage recognition scheme

Although some of the existing recognition systems incorporate a module for learning object models from
examples {e.g. Tucker's 2D system [32]) no such capability exists yet for the more difficult problems of
recognizing 3D objects [28] or handwriting [8]. We believe that incorporating learning into a general-purpose
recognition system may be facilitated by breaking down the task of recognition into three distinct but
interacting stages: selection, indering and verification.

Seiection

Selection or segmentation breaks down the image into regions that are likely to correspond to single
objects. The utility of an early segmentation of a scene into meaningful entities lies in th: great reduction
of complexity of scene interpretation. Each of the detected objects can in turn be subjected to separate
recognition, by comparing it with object models stored in memory. Without prior segmentation. every
possible combination of image primitives such as lines and blobs can in principle constitute an ohject and
must he checked out. The nower of early segmentation may be enhanced by integrating all available visual
cues. especially if the integration parameters are automatically adjusted to suit the particuli. scene in
question.
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Indering

By indexing we mean defining a small set of candidate objects that are likely to be present in the
image. Although one cannot hope to achieve an ideal segmentation in real-world situations, partial success
1s sufficient if the indexing process is robust. Assuming that most objects in the real world are redundantly
specitied by their loral features, a good indexing mechanism would use such features to overcome changes in
viewpoint and ilundnation, occlusion and noise.

What kind of {eature is good for indexing? Reliably detected lines provided by the integration of several
low-level cues in the process of segmentation may suffice in many cases. We conjecture that simple viewpoint-
invariant combinations of primitive elements, such as two lines forming a corner, parallel lines and symmetry
are also likely to be useful. Ideally, only 2D information should be used for indexing. although it may be
augmented soinetimes by qualitative 3D cues such as relative depth.

Verfication

In the verification stage each of the candidates screened by the indexing process is tested to find the hest
match to the image. At this stage, the system can aiford to perform complicated tests. since the number
of candidate objects is small. We conjecture that hierarchical indexing by a small humber (two or three)
features that are spatially localized in 2D suffices to achieve useful interpretations of most everyday scenes.
In general, however, further verification by task-dependent routines {56] or precise shape matching. possibly
involving 3D information. is required [57] {34] (28] (5] [1] [32].

As an example, T. Breuel (in these Proceedings) has considered the problem in which a recognition
system is not given a fixed set of object models, but rather a set of image/label pairs from which it has
to build its own object models that it subsequently uses to identify objects in new images: that is. he has
considered the problem of model acquisition - in the domain of wire-frame polyedric objects ~ as an integral
part of the problem of object recognition.

2.7 Future projects
The Vision Machine will evolve in several parallel directions:
e improvement and extensions of its early modules
e improvement of the integration and recognition stages (recognition is discussed later)

o use of the eyc-head system in an active mode during recognition task by developing appropriate gaze
strategies

e use of the results of the integration stage in order to improve the operation of early modules such as
stereo and motion by feeding back the preliminary computation of the discontinuities

Two goals will occupy most ot our attention. The first one is adevelopment of the overall organization of
the Vision Machine. The system can be seen as an implementation of the inverse optics paradigm: it attempts
to extract surface properties from the integration of image cues. 1t must be strrssed that we never intended
this framework to imply that precise surface properties such as dense, high resolution depth maps. must be
delivered by the systeni. This extreme interpretation of inverse optics seems to be commn on. but was not the
motivation of our project, which originally started with the name Coarse Vision Mach.r¢ to emphasize the
importance of computing qualitative, as opposed to very precise, properties of the environment. Our point
of view is outlined in these Proceedings by tEdelman and Poggio.

Our second main goal ‘n the Vision machine project will be Machine Learning. In particular, we have
begun to explore simple learning and estimation techniques for vision tasks. We have succeded in synthetizing
a color algorithm from examples [23] and in developing a technique to perform unsupervised learning [18] of
other simple vision algorithms such as simple versions of the computation of texture and stereo. In addition,
we have used learning techiniques to perforin integration tasks, such as labeling the tvpe of discontinuities
in a scene. We have also begun to explore the connections between recent approaches to learning. such
as neural networks, genetic algorithms. and classical methods in approximation theory such as splines.
Bayesian techniques and Markov Random Field models. We have identified some common properties of all




these approaches and some of the common limitations, such as samiple complexity. As a consequence, we
now believe that we can leverage our expertise in approximation techniques for the problem of learning
machine vision. Our future theoretical and computational studies will examine available learning techniques.
thewr properties and hmitations and develop new ones for the tasks of early vision, for the integration stage
and for object recognition. The algorithms will be tested with the Vision Machine system and eventually
ieorporated into it. We will also pay attention to parallel network implementations of these algorithms: for
this subgoal we will be able to leverage the work we are now doing in developing analog VLSI networks for
several of the components of the Vision Machine. Towards the goal of achieving mucl higher flexibility in
the Vision Machine we propose to explore (a) the synthesis of vision algorithms from a set of instances and
(b) the rofinement and tuning of preprogrammed algorithms. such as edge detection. texture discrimination.
motion. color and calibration for stereo. We will also develope techniques to estimate parameters of the
mtegration stage. Much of our effort will be focused on the new scheme for visual recognition of 3D objects,
whose key cotiponent is the automatic learning of a large database of models. We aim to develop @ protatype
of a flexible vision system that can, in a linited way, learn from experience.

3 Object Recognition

In carhier reports, we have des:ribed a series of approaches to the problem of model-based object recognition.
based on matching object shape. Our work has proceeded along a number of fronts.

3.1 Recognition from Matched Dimensionalities

Earlier reports described the work of Grimson and Lozano-Pérez on the recognition of occluded objects
from noisy sensory data under the condition of matched dimensionality. Specifically, if the objects to he
recognized and localized are laminar and lie on a flat surface, or if the objects are volumetric but lie in stable
cenfigurations on a flat surface, then the sensory data need only be two-diniensional (e.g. a single image):
if the objects to be recognized and localized are volumetric and lie in arbitrary positions, then the sensory
data must be three dimensional (e.g. stereo or inotion data, laser range data). The original technique (called
RAT) was designed to recognize polyhedral objects from simple measurements of the position and surface
orientation of small patches of surface. The technique searches for consistent matchings between the faces of
the object models and the sensory nieasurements, using constraints on the relative shape of pairs of model
faces and pairs of measurements to reduce the search.

Our empirical work on RAF has advanced along a number of dimensions. First, we have shown that
the RAF framework can successfully recognize and locate objects based on a variety of geometric features:
edges. vertices. curved arcs, planar surface patches, and axes of cylinders and cones. Second, we have also
shown that such features can be extracted from a range of sensory information, including grey level images.
stereo data. motion data, sonar returns, laser striping data and tactile data. Third, we have shown that
the RAF framewcrk can be extended to deal with some classes of parameterized objects. These include the
recognition of objects that can scale in size, the recognition of objects that are composed of rigid subparts
vonnected through rotational degrees of freedom (e.g. a pair of scissors) and the recognition of objects that
can undergo a stretching deformation along one axis.

Our empirical experience with RAF suggested that the method was remarkably efficient when dealing
with data from a single object. but was inefficient when spurious data was included. To overcome this, we
have incorporated a Hough transform to pieselect portions of the search space on which to focus attention,
anl we hiave used thresholds on the goodness of an interpretation to terminate search. The combinstion of
these two techniques resulted in dramatic improvement in the efficiency of the search method. Based on
these observations, we have heen developing a formal hasis for explaining these results. In particular. we
have shown the following formal results:

o Il all of the data is known to have come from a single object. the expected amount of search is quadratic
in the number of data and model features.




o If spurious data is included, the expected amount of search is a combination of polynomial in the
number of daty and model features, but exponential in the size of the actual correct interpretation.

o Using a Hough transform to preselect subspaces of the search space reduces the values of the parameters
in the complexity bounds, bat still feaves an exponential problem.

e Using premature teriination of search based on a threshold on & “good™ interpretation reduces the
expected search. In particular, if the scene clutter is small enough celative to the noise in the data, the
expected search becomes polynomial, otherwise it is a low order exponential.

To support the use of Hough transforms and premature termination of search, Eric Grimson and Daniel
Huttenlocher have executed a formal analysis of these methods. They have derived formal characterizations
for the probability of ialse positives in the Hough space, as a function of the noise in the data and the
charactenisties of the Hough transform. These results provide a means of evaluating the efficacy of the
Hough transform, and suggest that one should not, in general. rely on the Hough transform to fully solve
the recognition problem, but rather that one should use it as a preprocessor, selecting out. small subspaces
within which the RAF method can be applied effectively. The results support the empirical obsorvations
concerning the reduction tn search.

Grimmson and Huttenlocher have also developed a formal characterization of thresholds for ternminating
search, relating analytic bounds on such thresholds to expected probabilities of errors. These fortal results
have been shown to agree with empirical evidence from several recognition systems.

Much of our earlier work with the RAF recognition system dealt with robotics environments and the
recognition of industrial parts. We have continued this effort by integrating RAF into the HANDEY task
level planning system of Lozano-Pérez. We have also continued a pilot study of applying the technique to o
very different domain, underwater localization. Specifically, we have considered the problem of determining
the loeation of an autonomouns underwater vehicle by matching sensory data obtained by the vehicle against
bathymetric or ~ther maps of the enviromment. Sensor modalities include active methods such as sonar, and
passive methods such as pressure readings and doppler data from passing ships. We have conducted some
early simnlation experiments using RAF, together with strategies for acquiring sensory data to solve this
loealization problem, with excellent results.

Cor formal analysis and our enwirical experience bod argue that the RAF approach to recognition fails
to adequately deal with the issue of segmentation of the ‘ata into subsets that are likely to have come
from a single object. While the Hough transform can help reduce this problem, it is model driven, and
lienee potentially very expensive when applied to large libraries of ob:+ 5. As an alternative to this, David
Jacobs has direetly addressed the issne of generic grouping in an image. Jacobs has derived measures for
deternnuing the probability that a set of edge fragments in an image is likely to have come from a single
object These measures consider simple measurements such as the separation of groups of edges, and the
relative alignient of groups of edges. The recognition system, since it does not directly consider the abject
inodel may oeeasionally be incorrect. However, tests of the system on a variety of iinages of two- dimensicial
and threesdimensional seenes shows a remarkable and dramatic reduction in tae search required to recognize
obgeers fronea ibrary and also is quite effective at identifying groups of edges coming from a single objeet
e effeet of this groupang mechanisim is partienlarly apparent when applicd to libraries of objeets, sinee the
parsmeters computed by the grouping scheme can he used to do effective indexing into a Library

W biave also continued o investigate the wse of parallel architectures, such as the Connection Machine,
to obtan sunificant perforninee improvernents, "Todd Cass has completed the developinent and implemen
tation of a4 parallel recogninon seheme for twa dimensionsd seenes. on wlaeh he reported in the last vem
Proceodmus  The system uses aceareful Hongh transforn method, followed by a sampling sehene i the
paranneter spree to fiod mstances of anobjert and s pose Pypical performanee of the mmethod mvadves
the vorrect identifiention and localization of heavily occluded objects, i seenes in which a birge nnnbe
cf cthier pares are presents i under five coconds using a 16K processor configaration o the Coppes o
Machme NMare recent work e ntioned earcier e Toonsed onointegratime, this recagnition method wirl,
SRTE [:lw\lliM‘ ’~_\ the Ve M b
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3.2 Using Recognition for Mobile Robot Localization

Besides the HANDEY task-level planning system, we have also considered the appliction of our recognition
technology in the domain of mobile robots, especially for problems of long-werm autonomy. David Braunegg
has been considering the problem of constructing and maintaining a world model representation to support
the navigation o! leng-tert.: autonomons mobile robots. This research focuses on the nuse of stereo vision to
obtain enough inforination about the world to enable path-planning and navigation-planning to be performed.
Analysis of the requirements on a representation which can support long-term autonomy has icd (o tie desigr.
of a two-level world model, an implementation of which has just been completed. This world model integrates
stereo information acquired from a variety of viewpoints into a consistent whole. The system uses a variation
of the RAF recognition method in conjunction with the model to recognize its location from stereo data.
Experiments are currently underway to explore the efficacy of the method in integrating and maintaining
noisy 3D data about an environment as the mobile robot moves within it over extended periods of time.

4 Using motion

4.1 Direct Motion Vision

Berthold Horn and some of his students are now focusing on improvements in accuracy potentially available
when existing direct motion vision techniques are extended in time. Present methods recover motion and
shape from instantaneous rates of change, or two adjacent frames in the discrete case. While this permits
a reasonably simple formulation of the problem, the accuracy is not great, since the equivalent baseline is
typically quite short. One answer to this problem would be the use of longer time intervals between frames.
But then direct motion vision methods cannot be applied directly; instead, feature-based methods suited to
long-range motion vision problems would need to be applied. The advantages of the direct motion vision
methods, including potential for simple parallel implementation, sub-pixel accuracy in motion dctermination,
and dense depth map recovery would be lost. One approach is to use a dynamical model of the motion imaging
situation as the foundation for the systematic processing of an image sequence. In these proceedings Joe
Heel describes a systematic approach to the problem of using a sequence of images to estimate a depth map
and motion parameters. The approach leads to a formulation in terms of Kalman filters and to encouraging
initial results with synthetic and natural images. The direct motion vision approach can also be applied to
range images, where there i1s no concern with scale ambiguity or questions about the accuracy with which
the brightness change equation is satisfied [20].

Other related work by B. Horn focuses on using additional constraint to simplify the direct motion vision
problem. An important practical example of this is the use of fixation, since this introduces a constraint
relating the instantaneous translation and rotation of the observer. The idea here is to have one module
that tracks a designate”! patch in the image, while a second module recovers the motion and depth map.
The tracking module uses feedback based on known least-squares algorithms for constant optical flow in
a patch, as described by H.-H. Nagel and E.J. Weldon and used in the analog VLSI chip developed a:
Caltech by Tanner and Mead [54]. Unlike centroid-based and feature-based trackers, this method is not
restricted to bright blobs against dark backgrounds or specific features such as vertices on polyhedra. All it
needs is sufficient image contrast. particularly at higher spatial frequencies, and some limits on the rates of
deformation of the image pattern.

4.2 Recovering 3-D Trajectories

Hikdreth and Mistler are addressing the problem of recovering the 3-D trajectory of an object in space from
its changing size and position i the visual image. An approximation to the instantaneous 3-D heading of
an object can be derived by cc mbining the projected image velocity of the object with a rough measure of
the time -to--collision (T,) of the object with the observer. An approximation to T. is given by the ratio
g. where @ is the angular extent of the object under spherical projection, and @ is the rate of change of
this angular size over time, This approximation assumes that over short time intervals, the velocity of the




object is constant, and that the object is oriented roughly parallel to the image plane. We have recently
incorporated this approximation to instantaneous 3-D heading into an algorithm that derives the global
parameters of motion of an object undergoing a free-fall trajectory {52]. The algorithm derives the set of
parameters that yield a trajectory through space that best fits (in a least-squares sense) the t.me series of
positions and 3-D headings of the object. Initial siimulations suggest that the algorithm performs well for
small objects in motion.

4.3 Structure—-from—Motion with Surface Interpolation

Hildreth and Ando are exploring the integration of the recovery of 3-D structure from motion with surface
interpolation. The motivations for this are two-{old. First, many of the structure-from-motion algorithms
that have been proposed are feature-based, in that they first extract a set of moving features such as intensity
edges. corners. points. and so on, and then derive 3-D structure at the locations of these features. If the final
goal of the structure-from-motion process is to produce a complote surface representation, then restricting
the initial recovery of structure to the locations of features requires a subsequent stage in which a full surface
is interpolated between the depths at sparse features. Second, most algorithms also assume that a given set
of features persists over an extended image sequence. It would be desirable, however, to allow the structure-
from-motion process to cope with features that appear and disappear over tim -, for example, when occlusion
and disocclusion of surfaces occurs.

We combined Uliman’s incremental rigidity scheme for recovering the 3-D structure of discrete {eatures
over time with a smooth surface interpolation algorithm. As a set of features moves, its structure is built
up continuously over time, and at each moment, surface interpolation is performed to fit a compiete surface
over the moving features. The current surface serves as an initial solution for the next moment in time,
and newly appearing points in the scene are assigned an initial depth given by the interpolated surface at
that image location. This scheme allows a full 3-D surface to be built up over an extended time, despite
appearance and disappearance of features.

5 Photogrammetry

B. Horn is continuing to find application of known results in photogrammetry to machine vision. The optical
flow equations of Prazdny and Longuett-Higgins, for example, are the parallax equations that occur in the
iterative adjustment of relative orientation and exterior orientation [2]. Also, the relative orientation method
using linear equations derived from eight ray pairs have been noted in photogrammetry (and discarded
because of their inability to deal properly with the least-squares version of the problem) {47]. Significant
further improvements of the new iterative relative orientation method reported on in last year's Image
Understanding workshop resulted from a comment by a reviewer of the paper [19]. The equations simplify
if the Lagrange multiplier is not eliminated and the symmetric normal equations are solved directly.

It has also been found that solutions of the relative orientation problem come in groups of four (not
counting baseline reversals) if one does not consider the signs of distances along the rays (that is, whether
ravs intersect “in front of " or “behind” the camera). There always is at least one such group. Following a
suggestion of Arun Netravali, it has been found experimentally, that while there are typically only two or
three such groups of solutions, there can he four or even five. This overabundance of solutions is fortunately
not a big issue. since it is rare to have positive signs on all the distances along rays on more than one of
these “solutions.” Atso. when there is more than one solutions with all intersections in front of bath imaging
systems. then often one of these solutions involves very small or very large distances (often less than one
hundredihs or more than one hundred “imes the length of the baseline).
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6 Shape-from-Shading

A recent revival of interest in photoclinometry, which is what astrogeologists call shape from shading. lead
to a new look at iterative algorithms for this problem and the discovery of a novel method that can handle
complex surfaces as well as integrate height and gradient information provided by other vision modules such
as binocular stereo and motion vision (Horn, these Proceedings). The new method can actually obtain an
exact solution if the numerical data is exact, despite the fact that it uses a regularizing term. It also lends
.tself to parallel implementation either on high speed digital computers or in coupled analog networks [18].

Other recent work, summarized by B. Saxberg in these Proceedings, involves the application of the
dynamical sy<tems approach to the solution of shape-from-shading problems [52]. [t appears that for the
first time the question of the existence of the solution may be apprcached. It seems now to be possible
to create “impossible” shaded images—images that cannot be shaded views of any real surface under the
assumed lighting and surface reflection properties. This may explain our ability to often separate albedo
variations from shading eflects resulting fromn surface shape. Also, a collection of papers on shape from
shading. including a comprehensive bibliography. is 2bout to appear [16].

7 Qualitative shape descriptors from stereo

Vision is sometimes described as a problem of inverse optics. We mentioned in a previous section that this
does not require the computation of dense arrays of high-precision data of the different physical properties
of surfaces. Human vision does not seem to involve the computation of the precise inverse mapping of
the projection of 3D world onto a 2D retina but something more qualitative. Daphna Weinshall (these
Proceedings) has concentrated on qualitative information that can be obtained from stereo disparities with
little computation. More specifically, local surface patches are classified as convex, concave, hyperholic or
parabolic, using a simple function of image disparities. The axes of minimum and maximum curvature, as
well as the asymptotic axes (if they exist), are also obtained. The algorithm works well with synthetic images
and exact disparities. It is used to compute axes of zero curvature on real images.

8 Analog VLSI circuits for vision

As we discussed last year, our Vision Machine is mostly specialized software running on a general purpose
computer, the Connection Machine. This is an ideal system for the present stage of experimentation and
development. Later. it will make sense to compile the software in silicon in order to produce a faster.
cheaper. and smaller Vision Machine. With funding from NSF and DuPont, we are beginning to use analog
VLSI technologies to develop some initial chips as a first step toward this goal. Within the integrated
circuit, the image data may be represented as a digital word or an analog value. While the advantages
of digital computation are its accuracy and speed, digital circuits do not have as high functionality per
device as analog circuits. Therefore, anaiog circuits should allow much denser computing networks. This
is particularly important for the iategration of computational circuitry and photosensors, which will help
16 alleviate the 1/O bettleneck typically experienced whenever image * are serially transferred between
modules.

In these Proceedings Woody Yang discusses C'C'Ds for signal processing and imaging, deseribing some
basie operations and now those operations can be combined into a C'C'D processor architecture for vision. A
cirenit for perferming Laplacian-of-Gaussian filtering of the imiage has been sent to fabrication. The paper
discisses other CCD circuits for the integration-reconstruction stage of the Vision Machine and for sterea,

Berthold Horn has studied in an elegant way different kinds of analog networks for vision tasks [18], snch
as resistive grids and eircuits with nonlinear components. He has focused on networks composed of locally
mtereonnected passive elements, linear amplifiers. and sivaple nonlinear components [54]). While there L
been exenrsions into the developiment of tdeas in this area since the very beginnings of wark on machin
vision ] and it was peeently suggested that standard regularization algorithm can be tmplamented 1
analog networks of resistars and botteries [-12], mnch work remains to he done. Progress will depend o
careinl attention to matehing of the capabilities of simple networks to the needs of carly vision




9 Learning

As we discussed in the last Proceedings, F. Girosi, B. Moore and T. Poggio have approached the problem
of learning from the point of view of classical approximaticn theory. Poggio and Girosi have recently
obtained what we believe is a satisfactory understanding of the learning obtained by “neural” networks
such as backpropagation. In the last Proceedings we had drawn a formal analogy between simple forms of
learning and hypersurface reconstruction. As a consequence, learning can be achieved by techniques such as
regularization and therefore generalized splines. The connection, however, between these classical methods
and feedforward networks of the backpropagation type remained unclear. Poggio and Girosi have now found
that the missing link is provided by the approximation method of Radial Basis Functions. The Radial
Basis Function approximation method has a sound theoretical basis and a direct interpretation in term of
a feedforward network with one "hidden” layer. Poggio and Girosi have been able to prove its connections
to generalized splines, to regularization techniques and to Bayes’ approaches. They have developed several
new extensions of the method and indicated how to address a few general issues in networks and learning
within its formal framework (Girosi and Poggio, in press).

We describe briefly the interpolation and approximation technique called Radial Basis Functions (see for
a review [46]). which has been used in the past for surface interpolation with very promising results [9. 13]
{clearly surface reconstruction is another application of this technique of interest to vision research).

9.1 Radial Basis Functions

Given aset D = {(Fi.§;) € R* x R|i = 1,..N} of data to interpolate, the Radial Basis Function method
corresponds to choosing the form of the interpolating function as

N
F(E) =Y cih(||E - &)
i=1
where h is a smiooth univariate function defined on [0,00) and ||-|| is a norm on R™. This formula means that
the interpolating function is expanded on a finite N-elements basis that is given from the set of functions
h translated and centered at data points. The N unknown coefficients of the expansion can be recovered
imposing the interpolating conditions F(Z;) = Y¥;. This gives the linear system

N

i =Y ah(| - &P j=1,...N.

i=1

Defining the vectors Y, & and the symmetric matrix H as follows

(Vyi=VYe, (i=c, (H)ij=h(|E -z
we obtain

F=H™'Y
provided H is invertible. The invertibility of H depends on the choice of the function h. In fact Micchelli
[37] proved the following theorem. that defines a class of functions that we can choose to formn the hasis:

Theoremr 9.1.1 Let (G be a conlinuous function on [0.>) and positive on (0,5). Suppose s first devivalive
ts completely monotonic but not constant on (0,o¢). Then for any distinct rectors ¥y, ... Fx € R"

(=) Vet G(||F - F||%) > 0

The interpolation conditions can be weakened if the number of knots is made lower than the number
of data and their coordinates are allowed to be cliosen arbitrarily [6]. In this case. denotmg with 50 1y
the coordinates of the K knots (K < V) the interpolation conditions give the linear system Yo = /17 whe r
(., =hGFE -0 G=1. . Nand o = 1. K). The matrix H being rectangular (8« Ky this suston




Figure 2: The Radial Basis Function network for the interpolation of a bivariate function. The hidden unil
h,, evaluates the function h(||E — £,{[%)

is overconstrained and the problem must be then regularized to obtain a reasonable set of coefficients for the
expansion. A least-squares approach can then be adopted and the optimal solution can be written as

E:H+Y’:

where H 7 is the Moore-Penrose pseudo-inverse. In the overdetermined case, one has

HY =(HTH)"'HT.
As in the previous case this formulation makes sense if the matrix HT H is non singular. Micchelli’s theorem
1s still relevant to this problem, since Poggio and Girosi proved the following corollary:

Theorem 9.1.2 Le! G be a function satisfying the conditions of Micchelli’s theorem and Z,,...,Zny a N-
tupla of vectors in R™. If H is the (N — s) x N matriz H oblained from the matriz G; ; = G(||Ti — Z;||)
deleting s arbitrary rows, then the (N — s) x (N — s) matriz HT H is not singular.

The first layer consists of “input” units whose number is equivalent to the number of independent variables
of the problem. The second layer implements the set of radial basis function and its number of units is equal
to the number of knots. The units of the second layer are in general fully connected to the units of the
first one. The third layer consists of one unit (for a scalar function) connected to all the units of the second
layer and computing a weighted sum of their outputs. The weights are the coefficients of the radial basis
expansion and are the only unknown of the problem. Since spline interpolation can be implemented by such
a network, and spline are known to have a large power of approximation we have then shown that an high
degree of approximation can be obtained by just one hidden layer network.

"2 An extension: Generalized Radial Basis Functions

Poggio and Girosi noticed thac viie knots of the radial basis expansion have been kept fixed, the weights
being the only unknowns. To make the method more flexible they propose to consider even the knots as
unknowns and to look for the configuration of weights and knots that minimizes the least square error on
the data. The problem consists then in finding the values of the coefficients ¢; and knots i, that minimizes
the function

N K
E=3"(Y = cahll|F — fal))*.
a=1

i=1
A gradient-descent approach can be adopted to find the solution to this problem. The values of ¢, and f,,
are then regarded as the coordinates of the stable fixed point of the following dynamical system:

AE
Ca= ~w;CG, a=1 .K
t,= —w—of, a=1 . K
At ,
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where « 1s a parameter determining the microscopic timescale of the problem and is related to the rate of
convergence to the fixed point. Defining the interpolation error as

K
A =Yi- ) eah(l|F = al?)
:1
we can write the gradient terms as

K
dce

N
o VI AL

i=1

OE N e e -
a = 4c, ;Ailz (& = Eall>)Ei = 1)

where A’ is the first derivatives of h. Equating %Q to zero we notice that at the fixed point the knot vectors

f, satisfy the following equation:

Zi PRI
2 ke
where P* = Ah'(||F; ~ {.]}*). The optimal knots are then a weighted sum of the data points. The weight

Pf of the data point i for a given knot « is high if the interpolation error A; is high there and the radial
hasis function centered on that knot changes quickly in a neighbor of the data point.

fo =

9.3 RBF are equivalent to regularization

Interesting connections between RBF and regularization techniques arise when the basis function are chosen
to be Gaussian. Let us consider the RBF method in its original formulation, having chosen the basis function
to be a Gaussian G. The coefficients of the expansion are the solution of the linear system Y = G¢ where
(G)i; = G(||F; — F;{|*). If data are noisy a well known technique [55] to regularize the solution is to substitute
the previous linear system with the following

Y = (G+ )&

where A is a small parameter and [ is the identity matrix. We now show that the same approximating
function can be obtained {from a pure regularization approach. Let us consider the following functional

E\[F] =Y (Y - F(&)* + Ajdfi an( D7 F(£))*
m=0

i
R 2 2 2 =, 9 2 . - -
where A is a parameter, D?™ = ¥2m D?m+l = YV2M T2 is the Laplacian operator and the coefficients a,,

. . 2m . .. . .
are to be chosen. It can be casily proved [61] that by posing am = Zm= the function that minimizes this
functional can be written as

N

F(5) =Y aG(IF - &) (1)

=1

where (i is a GGaussian of variance o and the coeflicienis satisfy the linear system Y = (G + A1) that is the
satne as before. So in this case RBF and regularization are equivalent. Notice that changing the coeflicients
@, is equivalent to selecting another basis function h instead of (7. In fact it can be shown that the set a,,
aind b oare related by the following distributional partial differential equation:

)

Z (=) a,, V2" h(F) = 8(F)

m=0

70




The stabilizer described above is not the most general one. Other types could have been chosen, depending
on the a priori information about the surface to be reconstructed. The previous one is suitable if we want
to keep local the interaction between a data point and its neighbors, since the Gaussian falls off very quikly,
that is the “interaction” is short range. It can be shown that this is related to the presence of a term of
degree zero in the stabilizer [61]. For example, in two dimensions, if we chose a stabilizer like

2F\® [ 0*F\’  [8°F\®
] ey [(a?) +2(55) * (3 ]

this leads to a Radial Basis Function of the type A(||Z]|?) = ||Z||*log||Zfi. This kind of interaction is clearly
long-range, as it should be, since the corresponding functional is the bending energy of a thin plate of infinite
extent (Duchon and Meinguet gave the name thin plate splines to the solution of the interpolation problem
obtained minimizing this functional).

The same kind of results can be obtained in a third way, in the networks framewo.n. Let us cousider
the network of fig. 2 and the problem to find the “synaptic” weights. If we adopt a least square criterion
we recover the usual linear system Y = G, but often it is considered an advantage to keep the connections
frow growing to infinity, and so the following functional is minimized:

N
Eo[F] =3 (=Y aGUiE - BP0 D e
i =1 [}
where the last term gives an high price to the configurations in which some coefficient ¢; is very high.
It is immediate to see that the minimization of this functional leads to the solution of the linear system
Y = (G + AIE This shows the equivalence between some of the “new” neural networks techniques and
classical regularization.
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USC IMAGE UNDERSTANDING RESEARCH: 1988-89 *

R. Nevatia, K. Price, and G. Medioni
Institute for Robotics and Intelligent Systems
University of Southern California
Los Angeles, California 90089-0273

ABSTRACT

This paper summarizes the USC Image Understanding research projecis and provides references to more detailed
sources of information. Our work has focused on the iopics of: robotics vision, mapping from aerial images, motion
analysis, some general techniques and parallel processing.

1 INTRODUCTION

This paper suminarizes our research projects during the past year. Some of this work is described in more detail
in other papers in these proceedings(l, 2, 3,4]; this work is covered only briefly in this summary. We also provide
references to details for work not described elsewhere in these proceedings.

Our research activity has focrssed on the following major topics:

¢ Robotics Vision
e Mapping from Aerial Images
e Motion Analysis, and

e Parallel Processing

2 ROBOTICS VISION

Our concentration here has been on description of 3-D shape and recognition of objects based on shape. We have
made some major progress in these areas in the last year. We have studied techniques using range data, a pair of
stereo images, aud a single intensity image. We have also constructed some range finders in our laboratory. We
have been developing methods for both surfws 1 volume descriptions. Both methods rely on the same underlying
philosophical concepts - that complex shapes .eed to be described by decomposition into “simpler” parts and that
the inter-relations of the parts are a significant aspect of the shape description. The decomposition can be carried
out successively to the desired level of detail. We call such descriptions siructured, hierarchical descriptions.

2.1 RANGE DATA UNDERSTANDING

Range imagery provides an interesting domain of application in which the measurables in th_ image relate directly to
the shape of the objects in the scene (as opposed to their texture, color, reflectance, etc. in intensity imagery). Our
goal is to perform high level tasks such as object recognition and pose identification. Such geometric reasoning can
only be performed using object-centered descriptions. We briefly outline the advances we have made in designing
range finders to acquire depth images, in generating object-centered descriptions, and in recognizing complex objects
in scenes with substantial occlusion.

*This resesrch was supported, in part, by the Deferse Advanced Research Projects Agency contracts DACA76-85-C-0009
and F33615-87-C-1436, order No. 3119 and monitored by the U.S. Army Engineer Topographic Laboratcries and Air Force
Wright Aeronautical Laboratories respectively.
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Range finders

We have two different range finding systems available to generate a range map of a given 3-D object, both of them
based on active triangunlation. The first consists of an independent laser system generating a sheet of light projected
on the target object, which is placed upon a translation or a rotary table driven by a personal computer. This
computer includes a video digitizer board to which two CCD cameras, looking at the scene from both sides of the
sheet of light, are connected. For each camera, the projection of the 2-D curve consisting of the intersection of the
laser plane with the object is extracted. As our calibration procedure estatlishes the geometric transformation that
back-projects any point of the image plane to the corresponding point in the laser plane, we are able to reconstruct
the 2-D curve in the laser plane. Hence moving the object step by step provides a dense map of the surface of the
object either in cylindrical coordinates (rotary table) or cartesian coordinates {translation table)(5].

Besides its low cost, this system has several advantages over similar existing systems. First of all, we use two cameras
to limit the well known occlusion problem and we integrate range daia obtained from these cameras into a single
range image. The calibration of each camera is very simple, has a sub-pixel accuracy, and is performed only once
as the laser and the camera do not move. Our data acquisition uses an interpolation technigue that produces very
accurate depth measurements (typically 0.2mm precision at 1m) and our system also provides intensity data in
registration with the range data.

In the case where we can not or do not wish to move the scene on a tray, we use a system that consists of a nematic
liquid crystal mask inserted into a slide projector to provide an illumination pattern and a CCD camera looking at
the scene from a different angle. The hardware was provided courtesy of Prof. S. Inokuchi from Osaka University,
and the details of the system can be found in [6]. The main advantage of this system is speed, since by projecting a
sct of n Gray-coded patterns onto the scene, we obtain depths for 2™ lines.

Generating surfuce descriptions

In order to obtain useful surface descriptions, we need not only to devise a proper formalism using the criteria of
richness stability and local support, but also to design proper implementation tools to deal with real images (noise,
quantization and digitization).

We huve chosen to segment range images into simple surface patches, whose boundaries correspond to surface
discontinuities (Cop) or surface orientation discontinuities (C;). Each surface patch is then globally approximated by
a bivariate quadratic polynomial. The details can be found in {7]. This segmented representation of a scene may be
viewed as a graph whose nodes capture information about the individual surface patches and whose links represent
the relationships between them, such as occlusion and connectivity. Simpie reasoning on thesc relationships is used
to decompose the full graph into disjoint subgraphs corresponding to different objects. An example is shown in
figure la-c.

The success of this representation critically depends on our ability to compute the necessary attributes, such as
gradients and curvature, from an image in the presence of noise. We have found adaptive smoothing to be a tool of
great value for such operations. The details can be found in [8, 9], but the ideas can be summarize * as follows: The
general purpose of our Adaptive Smoothing scheme is to smooth a signal - whether it is an intensity 1mage, a range
tmage or a planar curve - while preserving and even enhancing its discontinuities. This is achieved by repeatedly
convolving the signal with a very small averaging filter modulated by a measure of the signal discontinuity at each
point. A relatively small number of iterations is needed to obtain a smooth signal suitable for features extraction.
In range images, we use curvature features such as curvature extrema or zero-crossings which are easily detected and
directly localized after Adaptive Smocthing as opposed to Gaussian Scale-Space approaches where a tedious tracking
procedure is needed.

3-D Object Recognition

We have been able to use the above descriptions to achieve successful recognition of complex objects in scenes
containing multiple objects that are only partially visible and are occluding each other. An example of recognition
is presented in figure 1(d), and a detailed treatment can be found in {10,11]. For the purpose of matching, a model
is represented by a set of such descriptions from multiple viewing aungies, typically 4 to 6. Models can therefore
be acqui-ed and represeiited automatically. Matching between the objects in a scene and the models is performed
by three modules: the screener, which finds the most likely candidate views for each object, the graph matcher,
which performs a detailed comparison between the potential matching graphs and computes the 3-D transformation
hetween them, and the analuzer, which takes a critical look at the results and proposes points to split and merge
ohject graphs.




(b) Inferred objects

(c) Graphs (d) Results

Figure 1: Segmentation of a complex range image.
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Current focus

Our interest is in using our current range understanding sytem as a core and in extending it in the following ways:

e Other representations
The current system can only handle cartesian maps, whereas different sensors may furnish data more easily
expressed in cylindrical or spherical coordinates.

e Automatic model acquisition
The current model representation by a set of partial views should be modified to describe the entire object by
a single graph. This procedure should be done automatically by merging the different views of an object. We
are investigating this merging both at the data and symbolic level.

o Parameter sensitivity
The segmentation of range images into a set of surface patches depends on a few thresholds, similar to the ones
used in edge detection. This dependence can be significantly teduced by observing the distribution of errors
between the original data and the best surface fit. If the errors are not randomly distributed, the patch can be
resegmented with tighter parameters.

e More general patches
The current method can handle a large variety of complex objects, under the condition that the boundaries
between the patches are sharp. When the object resembles a free form surface, the approach used here breaks
down, because it forces us either to accept a bad polynomial approximation, or to introduce phantom boundaries
to preserve the goodness of fit.

2.2 SHAPE DESCRIPTIONS FROM INTENSITY IMAGES

Deriving reliable shape descriptions from one or more intensity images is much more difficult than from range data
because the information we can extract is sparse and imperfect. Our feature extraction methods do not find all of
the object boundaries and many of the boundaries may correspond to shadows, surface markings and noise. Thus,
our description methods must distinguish between various kinds of boundaries in addition to generating the shape
descriptions themselves, i.e. the segmentation and the shape description problem can no longer be separated.

We have developed two separate systems for this task. Both use a representation for object shape that assumes that
the objects of interest have some symmetries and that segmentation and description can be achieved by finding these
symmetries, which can be thought of as resulting from the projections of generalized cones. Generalized cones have
been used extensively in previous shape analysis work, usually, however, perfect data, such as that available from
a range finder, is assumed. In earlier work, we described a technique to work with sparse and imperfect data that
assumed that the scene contained a class of objects known as linear, straight, homogeneous generalized cylinders {12].
Our new method is able to handle much more general objects.

Our technique represents a complex object by decomposition into simpler parts. Our task now is to find which
boundaries outline a part and how the parts are inter-related. We do this based on a simple observation:

object parts are of finite eztent, hence they must be terminated by a boundary or by another part.

Our initial hypotheses as to where object parts may be found is based on finding symmetrical pairs of boundaries
which could constitute the “axial contours” of a generalized cylinder (or a “ribbon”). Even in simple scenes, this can
produce hundreds of possible alternatives. The choice between these multiple hypotheses is made based on the above
observation, namely that real parts must terminate somewhere. This process is highly effective in narrowing the
list of hypotheses and also produces hierarchical, segmented descriptions for complex objects simultaneously. This
method is described in more detail elsewhere in these proceedings(3].

In another approach, we attempt to implement a process of “perceptual grouping.” Again, we use the symmetry of
contours to form initial hypotheses. The choice between multiple hypotheses is based on a process of competition
between them. Competition is implemented in a highly parallel “constraint satisfaction network.” Further geometric
reasoning is applied between the hypotheses that survive this competition. Good segmentation has been obtained
for a variety of highly complex scenes in our experiments. Yet higher levels of reasoning can be applied if a pair of
stereo images are available resulting on complete 3-d description of visible parts of the objects in the scene. This
technique is described in detail later in these proceedings{4].

2.3 DEPTH FROM STEREO

Our previous stereo methods (13, 14] relied on segments derived from connected edgels as primitives. In the presence
of texture, however, this continuity along segments cannot be enforced, since the segments tend to be very short and
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Figure 2: Some figures for which we readily perceive 3-D shape from contour alone.

disconnected. We have made significant progress in building a system that aims at robustness with respect to scene
characteristics, from textured outdoors scenes to highly regular man-made objects. It offers the advantages of both
area-based (dense map) and feature-based processing (accurate Jisparity) by combining them wherever possible. In
the current version, the area-based process occurs first and is refined by the integration of edge information. It
is based on our observation that whenever there is enough “texture” (measured as intensity variation in a small
window), then a correct correspondence can be obtained by a local process. The area based approach proceeds
by computing a texture for each image view and performing a simple cross correlation between them. A match is
accepted if it corresponds to a peak for both views and this peak is high enough. The resulting dense disparity
image containing a few holes and incorrect matches is then filtered using the smoothness assumption to fill small
gaps and remove small spikes. Note that contrary to the case of feature based stereo, this smoothness assumption
is justified since we reason about patches of opaque objects, and that we can make inferences about occlusion and
detect “penumbral” areas (visible in only one of the views). This disparity map is a smoothed version of the true one,
however, because of the finite width of the windows used in processing. The problem is most acute at Cp (depth) and
C; (crease) discontinuities, but can be solved by introducing the edge information: the disparity map is adaptively
smoothed [9] subject to the constraint that the disparity at edgels is fixed. It is important to note that this method
gives an active role to edgels parallel to the epipolar lines, whereas they are discarded in most feature-based systems.
We have obtained very good results on complex scenes in different domains, as shown in the paper included in these
proceedings [1].

2.4 SHAPE FROM CONTOUR

In another project, we are investigating how the 3-d shape of an object can be inferred from its contour in a
single view. Most previous work in this area has been in the domain of polyhedral objects with only some limited
techniques available for analysis of curved surfaces [15,16,17). We have been studying objects such as shown in
figure 2. Our basic assumption is that much of an object’s 3-d shape is given by the symmetries in the figure and
that non-symmetric figures give poor 3-d impressions to humans as well.

Our technique uses certain constraints for determining the orientations of the points on the surface in 3-D based on
the following assumptions:

¢ Observed skew symmetries in the image correspond to real symmetries in 3-D

o That a certain contour in the image is planar
In (18] we have shown that in some cases these constraints are sufficient to uniquely determine the 3-d surfaces from

contour alone. However, we view these techniques as still being preliminary with much more analysis needed for
complex shapes. In particular, we need to examine if the assumptions hold in all cases of complex shapes.

The techniques for determining shape from contour, including our method outlined above, usually assume that the
image is obtained by orthographic projection. We have also been working on generalizing the techniques to work
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with perspective projection. We find that some of the equations are more complex but the orthographic techniques
still apply. One surprising result of our analysis is that in some cases the perspective analysis actually gives tighter
constraints than orthographic analysis. These techniques are described in [19].

3 MAPPING FROM AERIAL IMAGES

Our goal here is to produce high-quality symbolic maps of complex, cultural scenes from aerial image data. For some
time, we have been working with the domain of large commercial airport complexes. Such scenes have a variety of
features such as the transportation network (runways, taxiways and roads), buildings (terminals, hangars, etc.) and
mobile objects (airplanes, trucks, cars, etc.). Our aim is to produce descriptions of the individual objects in the scene
as well as an integrated description of the entire scene including the functional relationships between the parts.

Our motivation for this work is two-fold. Firstly, the specific tasks are of great practical significance for a variety
of applications. Secondly, we believe that the problem domain provides a rich testbed for experiments in building
high-performance visual “expert” systems. We do not necessarily imply that the exact algorithms developed for this
task will also be useful for all other tasks, but merely the hope that the approach will carry over for similar tasks.
We also believe that experience with specific domains is essential to development of more generic vision systems.
Mapping requires dealing with a multiplicity and variety of objects in a natural environment that contains texture
and markings. The solution requires use of powerful “bottom-up” descriptive techniques as well as the use of domain
knowledge. Such capabilities are obviously going to be needed by vision systems in other domains also.

Our approach in the design of the system is that it must be modular and that the modules interact mostly at high,
symbolic levels. In airports, for example the modules may be for detecting and describing the transportation network,
the buildings and the mobile objects. Detection of one type of object, such as a taxiway, may aid in increasing the
confidence of a structure believed to be a passenger terminal (and vice-versa). However, we believe that such
interaction takes place at a high level, after symbolic, object level hypotheses have been formed. This process can
be considered hierarchical; each module has sub-modules that operate in a similar way. Thus, the transportation
network module may consist of runway, taxiway and road modules; each of which operates somewhat independently
but uses context provided by the detection of other structures. Some structures may be more prominent and easier
to detect, for example, runways are easier to detect than taxiways. In that case, the former provides the context for
detection of the latter.

In our analysis, we do not assume specific knowledge of the scene, such as would be given by a detailed, current
map of the specific airport complex. Instead, we only have generic information that the scene being viewed is an
airport complex. Our approach is basically one of “hypothesize and verify.” Various grouping operations relying
on geometry, object shape and context form hypotheses that are then verified according to some desired attributes.
Our system detects runways first, as they are more prominent and can provide the needed context for detection of
taxiways (and many other objects in the scene), as these are much less constrained in shape and appearance than
the runways. The converse is also true, i.e. finding taxiways connected to a runway can help increase the confidence
of the detected runway.

In another project, we have been developing methods for detection and description of complex building structures
[20,21]. We have achieved what we believe is a major success in this effort and we are able to handle buildings
with wings of different heights. The shapes are restricted to being compositions of rectangles, however. The key to
the method is a technique for perceptual grouping of low-level features into meaningful high-level structures. This
method is described in detail in a paper in these proceedings [4]. We expect that this technique can be generalized
to work for a broad classes of objects, in aerial scenes and in other domains, and is a major focus of our current
research.

Further validation of hypotheses should, ideally, take place in the context of the larger system that is also reasoning
about other objects in the scene, such as the remainder of the transportation network, other buildings and the mobile
objects. Location of these objects will mutually affect the confidence levels of the descriptions of other objects. Many
interesting questions arise in the implementation of such interactions, such as the nature of the interaction and the
order in which it takes place (i.e the control structure). We are investigating alternative techniques for this in our
current work. The techniques described here should be viewed as a module for the larger system to operate with.
Regardless of the fine structure of the larger system, it is our belief that the system needs modules which are fairly
competent at finding the major, individual structures without the global context. The global context is useful to
refine or confirm the initial hypotheses and in some cases to initiate new hypotheses but can not be a substitute for
high quality description modules.
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Figure 3: Portion of LOGAN scene

3.1 AN EXAMPLE

Previously we have reported on our work in the extraction of runways [22]. Our technique consists of hypothesizing
runways by using linear segments, forming anti-parallels from them and then grouping the anti-parallels on the basis
of continuity and collinearity. The verification of the hypotheses comes from detecting expected markings on the
runways [23]. We have applied these techniques to a variety of airport scenes with success. In recent work, we
have further enhanced our verification technique. In earlier work, all processing was performed at one resolution.
This resolution is not adequate to detect all markings on the runway, on the other hand it is very expensive and
unnecessary to process the entire image at the highest available resolution. For the task of verification of specific
features, however, we can focus on just selected parts of the image and resegment it at the needed high resolution.
Thus, we have a case of the results of higher level symbolic processing guiding the low-level segmentation on a second
pass. We have found this technique to be highly effective in detecting subtle marks on the runway surfaces that
increase our confidence in the detection of the runways.

Consider the scene shown in figure 3, a 2200 x 800 pixel image of a portion of Logan International Airport in Boston.
The verified runway hypotheses are shown in figure 4. We are able to locate 71% of the centerlines, 63% of the
sidestripes, 100% of the threshold and touchdown marks, 70% of the long distance marks, 56% of the short distance
marks, and 89% of the blastpad marks. Additional markings are obtained by re-segmenting small portions of the
image. We have tested this feedback step by looking for missing centerlines and blastpad marks. This brings the
centerlines to 96% and the blastpad marks to 100% . Note from the markings detected in our example that the
1unways can be readily classified as precision instrument runways [24]. However, at this stage we do not attempt to
specifically assign a confidence value to each detected runway.

Taxiways are much more complex objects than runways, as they can have a wider range in their geometrical param-
eters; they can be short or long, have a variety of widths, be straight or curved, and connert a variety of airport
components. Taxiway dctection is aided by the descriptions of previously detected runv. s, und also by knowledge
of airport design [24]. We know for instance, the minimum acceptable distance between : ‘+ _way and a runway if
they are parallel, or the minimum angle that a taxiway may form with a runway. We alsc 10w that taxiways do
not cross but join runways. Taxiway crossings however, are allowed.

The first step in detecting taxiways is to find long fragments which may correspond to fragments of taxiways. We
select apars representing potential taxiway fragments in a manner analogous to the sclection of potential runway
fragments [22]: they have a range of widths, and either are parallel to a runway or, form an angle greater than 25°
with a runway. Selected fragments are joined on the basis of continuity and collinearity, to form “long” straight
hypotheses.

The secuad step attempts to extend these straight portions of taxiways. This work is in progress at this time; it
includes the following context dependent processes:

1. Extension based on Aircraft Support: A large aircraft on a taxiway will cause the taxiway hypothesis to
fragment, thus to extend the taxiway fragments, we first try to detect aircraft by looking for symmetries due
to the aircraft wings and fuselage at each fragment end. If an aircraft is detected, the taxiway is extended the
length of the aircraft.
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Figure 4: Verified runways and taxiways

2. Extension based on Runway Context: We attempt to extend or discard taxiway hypotheses fragments based
on their spatial relationships to verified runways in the scene. The following steps are taken:

(a) Fragment intersects runway: The taxiway hypothesis fragments are extended until they intersect a runway.
If the intersection angle is greater than the minimum intersection angle and the distance between the
taxiway hypothesis fragment and the runway intersection point is small, we look for additional evidence
to extend the fragment into the runway. This evidence includes checking for shorter apars collinear to
the taxiway in this region and, failing this, the detection of aircraft in this region. If we find sufficient
evidence, the taxiway hypothesis is extended into the runway.

(b) Fragment is parallel to runway: If the taxiway fragments are parallel to one of the verified runways, we
look for small wide apars joining the end of the taxiway fragment to the runway indicating the presence
of a taxiway apron.

{c) Extension based on Taxiway Intersection: (see below)

(d) Extension based on Resegmentation: It is possible that a material change in the taxiway caused problems
for the initial grouping processes. We attempt to extend the taxiway fragments by resegmenting image
windows extending beyond the fragments’ ends, and looking for evidence of taxiway continuation. This
process is continued until no further evidence is found. At this point, we repeat steps (a) and (b).

The apars representing hypotheses of straight portions of taxiways are shown in figure 4. In this result, only process
1 was applied. Extension of taxiways based on intersections (process 2¢) attempts to describe the junctions and
connections among taxiways and between taxiways and runways. The accurate description of the junctions between
pathways also helps determine their function. Some are used as holding aprons; some are exit ramps (the closer to
the end of the runway, the smaller the angle between them, with angle determining the allowed exit speed); some
are merely connecting pathways; the continuous centerline determines the “legal” turns and paths; and so on.

The image in figure 5a, a portion of the image previously shown in figure 3, shows the intersection of four taxiways,
and connections between taxiways and runways when these are not parallel to each other.

We describe the juncticus by explicitly locating the boundaries, or portions of the boundaries, of the sections of
roadways that connect the previously detected runways and straight portions of taxiways. We use the geometrical
relationships among these to compute the size and shape of the search windows where we look for the boundaries.
Our method distinguishes two types of junctions: L-junctions (typically between portions of taxiways), and T-
junctions (typically joining taxiways and runways). More complex junctions, such as the one in figure 5, are viewed as
overlapping L-junctions. Note that there are no junctions bet ween crossing runways; they are considered overlapping.

For each pair of potential “joinable” (nearby and converging) fragments we distinguish an “inside” and an “outside”
boundary. The inside boundary, if it exits, would be found on the side where we measure the smaller angle between
the two elements. On the other hand, T-junctions are considered to have two “inside” boundaries. A second
classification involves the boundaries themselves. Some are curved while others are straight. The curved boundaries
— in sirport design — actually consist of circular or parabolic sections. However, we model the straight boundaries
as two straight lines, and the eurved boundaries by means of cubir splines. For each boundary we apply both models

and then the choose the better fit.
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(b) Selected connections (c) Underlying edges and evidence of markings

Figure 5: Taxiway junction at LOGAN




We look first for the inside boundary, and then for the outside boundary. (There is always an inside boundary.
However, at complex intersections there may be no outside boundaries.) If there is no evidence of an inside boundary,
we do not look for an outside boundary. The method is as follows:

1. For each pair of joinable elements collect the context information to compute a search window for the inside
boundary.

2. Look for an inside boundary. We compute a series of splines using three points for each: two anchor (fixed)
points (at the ends of taxiway fragments or inside runways) and a sliding point (which moves approximately
along the bisector of the two elements). For each spline, we compute the overlap of the spline with the underlying
intensity edges. The spline that returns the highest number of edges is taken as a hypotheses (possible inside
boundary) if the following criteria are met:

(8) The length of the underlying boundary (or boundary fragments) is at least one half of the length of the
spline. In other words, allow 50% boundary fragmentation and/or partial spline-to-boundary fit.

(b) The “junction™ between the spline and the element boundaries is smooth (15° tolerance), i.e., the tangent
to the spline at the intersecting edge points is similar to the direction of the edge.

3. Compute a search window for an outside boundary using information from the detected inside boundary.

4. Look for outside boundary. A process similar to that for inside boundaries. Compute a series of splines using
two anchor points and a sliding guide point. We compute the intersection of each spline with the underlying
intensity edges. The spline that returns the highest number of edges is taken as a hypotheses (possible outside
boundary) if similar criteria are met.

Figure 5b shows the original underlying edges, the taxiway and runway context (shaded areas), and the selected
connections we compute. As before, verification consists of finding the markings we expect. Our method looks for
the centerlines along he roadway as follows:

1. Re-segment and collect context information: We resegment the image to include all intensity edges in the
neighborhood of the junction.

2. Compute the search window and look for centerline edges. The search process is similar to that for inside
boundaries. We compute a series of splines using two anchor points and varying the position of the guide point.
We also look for the certerline edges along the straight portions of taxiways.

Figure 5¢c shows the re-segmented edges, the inside boundaries used to help locate the evidence of centerlines, and
the evidence found. Further details and examples are given in [25].

We have developed two techniques to detect buildings. One {20] is based on shape constraints for detection, and
the shadows that buildings cast for verification and obtaining three dimensional information. The second [21,4],
is more suitable for complex structures. It uses perceptual organization to gemerate multiple building hypotheses
from a stereo pair of images. Next, promising hypotheses are selected by a constraint satisfaction network based
on Hopfield’s model. The selected hypotheses (rectangular subparts) are then processed by stereo to compute three
dimensional descriptions. An example is given in figure 6. Figures 6a,b show a stereo pair of a terminal building at
Logan Airport. The rectangles selected and matched by stereo are shown in figures 6c and d respectively. Figure 6e
shows a rendered view of the building generated from an arbitrary view point using the 3D information computed.

We have been working with airport scenes representing extremes of complexity that are encountered in major com-
mercial airports (smaller airports are much easier to analyze). These represent a wide spectrum of runway types and
conditions; different runway surface materials, homogeneous and non homogeneous surfaces; runways with shoulders
of the same or different material and of various widths; and so on. The performance of the technique shows a high
degree of reliability if good image quality and adequate resolution are available.

We believe that the results that we have obtained indicate very good performance and indicate that the method will
work well on other examples. Also, it must be realized that it is not our contention that the various objects can be
analysed in isolation. Their detection and description is dependent on the various objects in the scene. Interaction
among such objects is part of our current research. We do believe that the results that we can obtain indicate that
our methods will provide very high quality input to the larger system.

4 MOTION ANALYSIS OVERVIEW

We have a number of ongoing efforts in the analysis of sequences of images including analysis based on a moving
observer and the detection and analysis of moving objects. Autonomous navigation provides the context for much
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of the work, though the techniques are of much broader utility. The effort is supported by our “Knowledge-based
Vision Techniques” contract as part of the DARPA strategic computing program.

Motion analysis using long range or feature point analysis techniques forms the central focus of our work. This
approach involves extracting a set of consistent features from a sequence of images (lines, corners, contours, regions,
etc.), finding the corresponding features in consecutive frames of the sequence by a series of frame to frame matching
operations, and finally computing three-dimensional motion estimates based on the series of correspondences, which
also produces depth information for the feature points. These problems have been addressed separately and to a
lesser extent together in a combined system. Qur work on spatio-temporal analysis and merging a series of depth
maps does not fit directly in this scheme, but both do use a feature based analysis to guide the processing and
improve the results. This overview discusses the current status of the research in these areas.

4.1 FEATURE MATCHING IN MOTION IMAGES

Elsewhere in these proceedings {2] we describe a method to establish correspondences between images in a motion
sequence. The matching method is similar to our previously reported work[26], but we now use multiple scales and
better primitives. We first smooth the images with adaptive filters at different scales, then detect edgels, link them
and extract segments and super-segments at each scale. We then match the detected features hierarchically, starting
with the larger scale, using an extension of our matching algorithm, in the following way (assuming the higher mask
is h and the lower is I):

1. Match the two images using features detected by mask h.

2. Match the results of the same image smoothed by h and by I for both images.
3. Combine the results to obtain predicted matches for the images smoothed by I.
4. Match the images smoothed by ! using the predictions.

Advantages

1. Edge localization: Hierarchical Smoothing with adaptive filters at different scales yields a hierarchical set of
features. But, unlike zero crossings of Laplacian of Gaussian masks (the features previously used), they shift
the edges by no more than a pixel between scales, thus matching the same image for different scales becomes
trivial. Any edge detector can be applied to the smoothed images, since they are nearly piecewise constant
and free of noise. We have used Canny’s edge detector to obtain edges that now represent real events and are
accurately located (unlike zero crossings).

2. Hierarchical Matching Matching images smoothed by large masks is relatively easy, as only a few strong
features are preserved. These are later used to restrict and guide matches for finer masks, thus reducing both
errors and computation time.

Applying this method to real images produces very good results. We have been able to match less closely spaced
frames yet obtain better results than with previous approaches.

4.2 CHRONOGENEOUS MOTION

Our earlier work in motion estimation from matching points assumed that the motion was constant through the
several (e.g. 5) frames[27]. By developing a technique that includes time along with 3-D position we have derived
a Chronogeneous Motion estimation technique[28]. This allows for the description of the constant motion cases
assumed by most researchers, as well as some cases of accelerated motion. This technique builds on our earlier work
in multi-frame motion estimation and the derivations both extend and confirm the earlier theoretical development.
We have implemented a basic 3D structure from motion with acceleratior case. This case has a closed form solution
given point correspondences in multiple frames. Such a soultion is not possible for the general case of chronogeneous
motion. The case of structure from known motion or motion from known structure is much easier and also has a
closed form solution. This method is being tested on synthetic data to determine the effects of quantization error
and noise in the input data.

4.3 NAVIGATION

One task for an autonomous land vehicle (ALV) is to use sensory data such as range and/or color images for visual
navigation. The vehicle has an inertial system that provides a good estimate of the vehicle position and orientation
with respect to a world coordinate system. As these measurements may deviate while the vehicle is moving, one task
of the vision system is to correct the estimate of the vehicle position.
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() Left view of building

(c) Selected rectangles (left view) (d) Selected rectangles (right view)

(¢) Rendered 3-D view of building

Figure 6: Terminal building at LOGAN
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Figure 7: Local Cartesian Elevation and Color Maps.

We chose to work in the context of an unknown environment using range and color images obtained from Martin
Marietta Aerospace. Knowing the position and orientation of the sensors with respect to the vehicle coordinate
system along with their parameters, we first established the geometric transformation that links the range data to
the color data. Thus, given a point in the color image where the fields of view of the two sensors overlap, it is
possible to find the 3-D coordinates of that point using a ray-tracing technique and the range image. Hence, the
output of an edge detection operator applied to the color image can be transformed into a 3-D edge map. Updating
the position of the vehicle thus consists first in matching the current 3-D edge map with the previous one, using the
knowledge of the position of the vehicle from its internal sensors (this method is currently under development and
gives promising results) to guide the matching process. The position of the vehicle is then updated by computing
the 3-D transformation between matched 3-D edges using a least-square technique.

Whether or not we rely on the vision system to update the vehicle position, it is usefull for autonomous navigation
purpose to generate a global cartesian elevation map (GCEM) of the area “explored” so far by the vehicle. For each
position of the vehicle, we construct a local cartesian elevation map (LCEM) derived from the range data using a
one pass technique. Along with the LCEM, we also derive a local cartesian color map (LCCM) by “painting” the
LCEM using the same geometric transformations discussed above. Figure 7 provides results obtain for one position
of the vehicle: the upper left frame shows the color image while the upper right frame shows the range image (after
adjusting for the ambiguity interval). The lower left frame shows a down-looking view of the computed LCCM while
the lower right frame shows a perspective view of the computed LCEM. The local maps can then be merged into a
global map given the successive positions of the vehicle and the matching procedure used for adjusting the vehicle
positions. Figure 8 shows a down-looking view of the computed global cartesian color map (GCCM) after merging
successive local maps. The filled-in circles give the trajectory of the vehicle, with the world coordinate system shown
in the upper left of the image.

44 MOTION FROM THE SPATIO-TEMPORAL VOLUME

Most approaches to motion analysis only use two or three image frames, therefore the estimates are unstable and
noisy. In 29, 30], a method which shows how to utilize many frames is introduced. The principle behind this approach
is to find the velocity components of an edge point along several different directions by taking slicesin the temporal
direction.

A sliceis a collection of 1-D images of small width taken from successive frames in the sequence at the same position.
This spatio-temporal data structure provides an easy way to trace a line segment through frames by finding paths
in a slice. A path may be induced by any portion of an object boundary. When the object moves, the projection of
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Figure 8: Global Cartesian Color Map.

the boundary sweeps out a surface in the 3-D spatio-t~mporal image volume, which is the image sequence with time
as the third dimension. The slope of this path is used to compute the displacement in the direction parallel to the

orientation of the slice.

The topelogy of paths in a slice gives important information to detect occlusion or disocclusion by extracting A or
Y junctions. The combination of results from multiple slices centered on a given point enables us to estimate its
velocity in the directior normal to the tangent to the spatial curve. Each frame receives several messages from earlier
image frames if there exists occlusion or disocclusion in the frame. Based on the location of occlusion or disocclusion
and 8-connectivity, the segmentation of edge points into contours becomes easier because the ambiguity of the three
way junction is resolved. The edge points in the first frame of the image sequence are then segmented into contours.
From the normal flow field, the occlusion information gathered during slice analysis, and the spatial structure of the
contours, the correct optical flow field induced by motion is then recoved under smoothness constraints.

Our programs work very well on synthetic image sequences but only achieve limited success on real image sequences,
mostly because of fundamental problems in low-level processing. For this reason, we have now decided to choose
smooth curves instead of edges as tokens. Smooth curves are generated by breaking linked contours where the tangent
changes more than a certain threshold. Slices centered at the middle point of each smooth curve in both frames are
taken and paths are extracted from those slices. Hash tables are set up with smooth curves as entries, associated
with the correponding curves in the other frame linked by paths as the stored values. Unlike other methods, the
correspondence among smooth curves with linking paths is rarely ambiguous. Smooth curves are grouped according
to their connectivity in both frames. Now the global matching problem can be divided into smaller pieces, groups
from both frames with paths linking their component curves are used to set up the global matching and velocity
estimation. Figure 9 shows two frames from an image sequence with a chair inside the window. Figure 10 shows the
smooth curves extracted from the two frames while matching groups are shown with the same texture.

Next we intend to detect or confirm the existence of occlusion or disocclusion. Special attention is paid to curves
joining at a junction or at the ends of a group of connected curves, these are places where occlusion or disocclusion
(uncovering) may take place. Slices are taken at those places and analyzed to find if Y and A junctions exist. We
also intend to estimate the displacement of curves from one frame to the other. Curves from one group are moved to
fit the location of its matching group with corners serving as anchors. The best fit is then used to estimate the flow
of the curve. The detection of occlusion or disocclusion, and the estimation of 2-D velocity are our current research

topics.
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(a) Fifth frame (b) Fifteenth frame

Figure 9: Two frames from an image sequece with a chair
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(a) Fifth frame {b) Fifteenth frame

Figure .0: Matches among groups of smooth curves
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4.5 INTEGRATED MOTION SYSTEM

In previous workshops(31], we have described the basic integrated motion system. We have continued to develop
and use this system for testing each of the components (feature estraction, matching, motion estimation, and motion
feedback to matching). This past year, we have concentrated on both the integration of the contour-based matching
system with the region-based system, and the computation of three-dimensional depth and structure from the motion
analysis. Three-dimensional motion estimation produces scaled estimates of the actual motion. The scale factor
cannot be determined without other information (actual depth to a point, actual motion of a feature, etc.}, but the
relative depths can be derived from the different magnitudes of computed 3-D motions of features that are known
to have the same actual 3-D motion (e.g. on the same object).

Region based approaches give a single motion and position estimate for all the points in the region. We are extending
the capabilities of the system to produce more structure estimates for each matching region by using the contour
based matcher to get correspondences for many points along the region contour. The contour matching programs
assume that the positions of the contours are similar from frame to frame to reduce the searching necessary to
produce a consistent match, but with the limited possible matches available when matching the contours from know
matching regions (both an initial 2-D motion estimate and the lack of other possible matches) we can use the contour
matcher with much larger disparities. The larger motion disparities are necessary to reduce the errots in the motion
estimation process and to improve the structure estimates of the objects.

5 PARALLEL PROCESSING

We have several projects concerned with parallel processing techniques. These include one that is implementing
current algorithms on the Connection Machine and another that is studying general techniques for implementing
image understanding algorithms on parallel architectures.

Physical boundaries of objects are very important descriptors and are likely to generate edges during the imaging
process. Even though the reverse is not true, it is reasonable to assume that the early stages in image analysis consist
of detecting such discontinuities. Due to the complexity of the physical world and of the imaging apparatus, and
to multiple sources of noise, the signal to be processed is complex, and the detection of such discontinuities is non
trivial. Features detected locally are validated only by considering a more global context.

Computer vision problems always pose a challenge to today’s computer systems. Early vision tasks occuring at the
pixel level usually involve at least 64k (256 x 256) elements. Massively parallel processors can alleviate the problems of
image processing because the operations are mostly spatially homogeneous. The Connection Machine [32] is a Single
Instruction Multiple Data (SIMD) machine having between 16k and 64k processors. The Connection Machine Model
CM-2 has 64 kilobits of bit-addressable memory for each processor instead of 4 kilobits for the CM-1. One of the two
modes of communication among the processors is through the physical grid connection (the sc-called NEWS network
since the connections are in the four cardinal directions), allowing fast direct communication between neighboring
processors. This facilitates the image processing, especially the low level processing of vision tasks.

To allow the machine to handle images with size more than 64k (or 16k), the Connection Machine supports virtual
processors. A single physical processor can be divided into several virtual processors by serializing operations in time,
and partitioning the memory in each processor. This allows the user to process images with sizes greater than the
physical number of processors. As the virtual-to-physical (VP) ratio increases, the size of the local memory of each
(virtual) processor decreases accordingly, and the speed of execution is slower than the speed of a physical processor
by apptoximately the VP ratio.

Adaptive Smoothing is an edge preserving image smoothing algorithm in which we iteratively convolve the image with
a mask whose coefficients reflect the degree of continuiiy of the underlying image surface. It has the nice property

of detecting edges accurately at different sca’-  Tigher level vision tasks, such as stereo and motion correspondence
problems, can therefore be easily tackled »v - g a multiple scale approach with adaptive smoothing. Since the
computation of Adaptive Smoothing .cyu.: .y very local information, only a 3 by 3 neighborhood, it provides a
direct massively parallel computation stru~ture w! ' +his extremely suitable for the NEWS network on the Connection
Machine. We have implemented it on the Con -n Machine with 16k processors and 64k bits local memory per
processor.

With the 16k processors, a 128 x 128 x 8bit image can be processed at one pixel per physical processor, namely
the VP ratio is 1. We have experimented with the adaptive smoothing on images of various sizes with different VP
ratio and observed its performance. Since the computation of adaptive smoothing involves the exponential function,
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the adaptive smoothing on the Connection Machine is performed using floating point arithmetic. With a Vax front
end and the parallel Lisp (*Lisp) implementation, each iteration takes about 50 msecs on a 256 x 256 x 8bit image
without a floating-point accelerator. In order to compare the performance to the algorithm on a serial machine, we
have also implemented the Adaptive Smoothing on a Symbolics 3645. It takes about 40 seconds for each iteration
of adaptive smoothing on the Symbolics 3645 over an image of the same size (256 x 256 x 8bits). Thus the speedup
we get from the Connection Machine over the serial implementation is about three orders of magnitude.

To identify corresponding locations between two stereo images, or among a sequence of images in a motion analysis
problem, is difficult because of the false targets problem (see [33]). The false targets problem can be alleviated
either by reducing the range and resolution of the disparity or reducing the density of the matching features in
the image. One commonly used method to obtain both resolution and range of disparity information is to apply a
multi-resolution algorithm. At coarse resolution, the density of the matching features is low, therefore reducing the
probability of false targets. The information obtained from the matching at coarse resolution can be used to guide
the matching at fine resolution to get the desired high density disparity information.

Gaussian filtering has long been recognized as a popular smoothing operation. The scaling behavior prevents new
features from appearing as the scale goes from fine to coarse. It and its derivatives can be efficiently implemented.
Also it can be easily mathematically analyzed. Its accuracy on edge detection, however, has also been long criticized.
When using Gaussian filtering as a multi-resolution operation for stereo matching, we have to deal not only with the
tedious coarse-to-fine tracking along scale space but also with accuracy of the disparity information at coarse scale.

One of the most attracting features of our scheme is that the edge locations do not move along the scale, which
enable us to construct a straightforward implementation of a multi-scale stereo matching algorithm. We have
implemented a multiple scale stereo matching algorithm which is based on Drumheller and Poggio’s [34] parallel
stereo implementation on the Connection Machine. Our implementation not only greatly reduces the number of
possible matches at each scale but also obtains a dense disparity map at fine scale.

In our work on parallel techniques for image understanding we have studied several storage and data access problems
arising in mapping image algorithms onto parallel machines, parallel implementations of techniques developed by
our group on hypercube and mesh based architectures, and continued our efforts in parallel computations on recon-
figurable VLSI arrays and reduced meshes(35,36]. (This work has been partially supported by AFOSR under grant
AFOSR-89-0032.)

In iconic processing of image arrays several data storage and access problems arise. These problems become partic-
ularly important while implementing such tchniques on parallel machines. An image can be represented by a two
dimensional array. Access to row vectors, column vectors, diagonals and subarrays are required heavily in image
computations. Also, while implementing partitioned VLSI arrays and special purpose arrays, access to various sub-
arrays is needed. We have developed a novel memory system for image processing. Latin squares, which are well
known combinatorial objects for centuries, are used as the skew function of the memory system. We have introduced
a new Latin square with desired properties for image array access. The resulting memory system provides access
to various subsets of image data (rows, columns, diagonals, subarrays, etc.) in constant time while it uses a simple
circuitry for address generation. This memory system is the first known memory system that achieves constant time
access to rows, columns, diagonals and subarrays using minimum number of memory modules [37).

We have studied efficient parallel implementation of symbolic techniques developed by our vision group on hypercube
SIMD arrays such as the Connection Machine. In particular, we have studied data movement techngiues for imple-
menting stereo and image matching using high level primitives. By preprocessing the model, routing information
is derived which is employed during the match phase. Our technique is simple and efficient and can be used on
current parallel machines such as the Connection Machine. Notice that methods based on sorting can solve the data
transport problems arising in the computation. However, in a model with iV objects, these data transport problems
can be solved in O(log N) time with a small constant factor by preprocessing the structure of the model. Similar
techniques have been developed for performing such computations on mesh based architectures. We are currently
implementing such data movement techniques on the Connection Machine at USC-ISI.
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ABSTRACT

This paper briefly summarizes research in image understanding conducted at the University of Maryland
during the 14-month period January 1988 through February 1989. The areas covered include motion analysis,
navigation, early vision, matching, parallel algorithms, pyramid techniques, and geometry.

MOTION ANALYSIS

CORRESPONDENCELESS METHODS

We have shown that a binocular observer can recover the depth and three-dimensional motion of a rigid
planar patch, without using any correspondences between the left and right image frames (static) or between the
successive image frames (dynamic). We have studied uniqueness and robustness issues with respect to this prob-
lem and have obtained experimental results from the application of our theory to synthetic and real images. [1]

SPACE-TIME FILTERING

In the process of extracting the optical flow through space-time filtering, we have to take into account con-
straints associated with the motion uncertainty, as well as with the spatial and temporal sampling rates of the
temporal sequence of images. The motion uncertainty is shown to satisfy an inequality, as a consequence of the
use of the Cramer-Rao inequality, which is a function of the filter parameters. On the other hand, the spatial
and temporal sampling rates have lower bounds, which depend on the motion uncertainty, the maximum support
in the frequency domain and the estimated optical flow. These lower bounds on the sampling rates and on the
motion uncertainty are constraints which constitute an intrinsic part of the computational structure of space-
time filtering. They are of a different nature than the ones used in regularization theory, because they do not
dictate any arbitrary constraints on the parameters being computed, but instead arise as a natural consequence
of the estimation process. By conjugating these constraints, we are able to devise an algorithm which describes
an adaptive procedure of estimating the various parameters involved in space-time filtering. This corresponds to
an instance of an adaptive system, through which the variables involved in the process of space-time filtering are
allowed to vary inside a range which is consistent with the various intrinsic constraints governing the process.

(2]
BINOCULAR FLOW ANALYSIS

We have analyzed image flow fields from parallel stereo cameras to determine the relative three-
dimensional translational velocities of the camera platform with respect to objects in view and to establish stereo
correspondence of features in the left and right images. A two step procedure is used. In the first step, the three
components of the translational velocity are determined from linear equations whose coeflicients consist of the
sums of measured quantities in the two images. Separate equations are developed for cases where measurements
of either the full optical flow or the normal flow are available. This computation does not require feature-to-
feature correspondence. In the second step of the calculation, the same equations are used, with the computed
translational velocities, as a constraint to find features in one image that correspond to given features in the
other image. Preliminary experiments with synthetic flow fields indicate that the method gives accurate results
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even in the presence of noise. [3]

FLOW FROM TEMPORAL EDGES

A new method for the detection of motion and the computation of optical flow has been developed. In the
first step of the calculation the intensity history at each pixel is convolved with the second derivative in time of
a temporal Gaussian smoothing function. The zero crossings in a sirgle frame of the resulting function indicate
the positions of moving edges. Spatial and temporal derivatives of the function ut the zero-crossing locations are
then used to compute the component of the flow that is noinal to the zero-crossing contours. Both the detec-
tion of motion and the computation of the normal velocity are insensitive to slow temporal and spatial changes
in the image intensity that are caused by illumination effects rather than motion. The relationship of this work
to gradient based flow measurement techniques has also been formulated. [4]

OPTIMAL USE OF POINT CORRESPONDENCES

One of the problems associated with any approach to the structure from motion problem using point
correspondences, i.e. recovering the structure of a moving object from its successive images, is the use of least
squares on dependent variables. We have formulated the problem as a quadratic minimization problem with a
non-linear constraint. We have derived the condition for the solution to be optimal under the assumption of
Gaussian noise in the input, in the Maximum Likelihood Principle sense. This constraint minimization reduces
to the solution of a non-linear system which in the presence of modest noise is easy to approximate. We have
developed two efficient ways to approximate it, and have defined some inherent limitations of the structure from
motion problem when two frames are used that should be taken into account in robotics applications that
involve dynamic imagery. Our formulation introduces a framework in which previous results on the subject
become special cases. (5]

TRACKING

A mathematical theory for visual tracking of a three-dimensional target of known shape moving rigidly in
3-D has been developed, and it has been shown how a monocular observer can track an initially foveated object
and keep it stationary in the center of the visual field. Our goal is to develop correspondence-free tracking
schemes and get rid of the limitations inherent in the optical flow formalism. A general tracking criterion, the
Tracking Constraint, has been derived, which reduces tracking to an appropriate optimization problem. The
connection of our tracking strategies with the Active Vision Paradigm has been shown to provide a solution to
the Egomotion problem under the assumption of knowledge of shape. Tracking strategies based on the recovery
of the 3-D motion of the target have been devised under the above assumption. A correspondence-free scheme
has been derived, which depends on global information about the scene (provided by linear features of the
image) in order to bypass the ill-posed problem of computing the spatial derivatives of the image intensity func-
tion, and amounts to the solution of a linear system of equations in order to estimate the 3-D motion of the tar-
get. An important feature of these tracking strategies is that they do not require continuous segmentation of the
image in order to locate the target. Supposing that the target is sufficiently textured, dynamic segmentation
using temporal derivatives of the linear features provides sufficient information for the tracking phase. There-
fore, this approach should perform best when previous ones fail, namely in a complex visual environment.
Experimental results demonstrate robustness in the presence of noise. [6]

APPARENT MOTION

The existence of two separate mechanisms for the processing of apparent motion, the short- and long-range
processes, as proposed by Braddick in 1974, has been analyzed through many different psychophysical experi-
ments. In particular the fact that for the short-range process there exists an upper bound for the spatial dis-
placement and temporal interstimulus interval between successive stimulus presentations was confirmed by
several of these experiments. In order to gain a more formal understanding of these issues, we have analyzed the
phenomenon of apparent motion from the point of view of a reconstruction problem. This allowed us to use the
sampling theorem to analyze the problem of temporal (spatial) reconstruction of uniformly translating patterns.
In the case where the velocity field can only be extracted with uncertainty, it can be shown that there exists a
maximum temporal (spatial) sampling interval, such that aliasing does not occur. We suggest that, in the case
of the short-range process, due to its temporal (spatial) reconstruction ability, a similar effect could intervene in
the limitation of its activity to a small spatio-temporal scale. [7]
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ERROR ANALYSIS

Relative metion between objects and the viewer generates a time-varying image which, in principle, can be
used as a source of 3D information about the structure of the objects and the relative motion. One approach to
obtaining 3D information from time-varying imagery is to utilize the image flow field and its derivatives. The
characteristics of the image flow field depend both on the relative motion and the surface of the object. Thus,
given the image flow field, in theory, one can invert the problem and recover the relative motion and the struc-
ture of the object. We have analyzed the intrinsic reliability of such an approach; i.e. assuming that the image
flow field is known accurately, except for quantization error, we have derived closed-form expressions for the
error due to quantization in the recovered 3D motion and structure parameters. These expressions are essential
for revealing the intrinsic limitations of the approaches used for the recovery of the 3D parameters from a given
image flow field and are thus of great practical importance. (8]

MULTI-FRAME METHODS

The main issue in the area of motion estimation given the correspondences of some features in a sequence
of images is sensitivity to error in the input. The main way to attack the problem is redundancy in the data.
Up to now all the algorithms developed either used two frames or depended on restrictive assumptions and ad
hoc techniques. We have developed an algorithm based on multiple frames that employs only the rigidity
assumption, is simple and mathematically elegant, extremely flexible and, most importantly, is a major improve-
ment over the two-frame algorithms. The algorithm does minimization of the mean square error, which we have
proved equivalent to an eigenvalue minimization problem. One of the side effects of this mean square method is
that the algorithm has a very descriptive physical interpretation in terms of the ‘“loaded spring model”. (9]

NAVIGATION

ROAD FOLLOWING

A method for the reconstruction of a road in 3D space from a single image has been developed. The world
road is modelled as a space ribbon generated by a centerline spine and horizontal cross-segments of constant
length (the road width) cutting the spine at their midpoints and normal to the spine. The tangents to the road
edges at the end points of cross-segments are also assumed to be approximately parallel. These added con-
straints are used to find pairs of points {matching points) which are images of the end points of world cross-
segments. Given a point on one road image edge, the method finds the matching point(s) on the other road
image edge. For images of road turns, a point on one road image edge has generally more than one matching
point on the other edge. The extra points belong to “‘ghost roads” whose images are tangent to the given road
image at these matching points.

Once pairs of matching points are found in the image, the reconstruction of the corresponding world cross-
segments is straightforward since cross-segments are assumed to be horizontal and to have a known length.
Ghost road cross-segments are discarded by a dynamic programming technique. A benchmark using synthetic
roads has been used in tests of the method, and the sensitivity of the road reconstruction to variations in width
and bank of the actual world road has been evaluated and compared to the sensitivity of two other algorithms.
Experiments with a sequence of actual road images as the Autonomous Land Vehicle {ALV) moves down a road
have also been performed. [10]

A new scheme for reconstructing the 3D shape of roads from camera images was subsequently developed
based on the local flatness approzimation. In this scheme, all equations are written in terms of NHC vectors
defined by quantities directly observable on the image plane. Hence, analysis is done solely in the image
domain: No 3D solution is constructed in the scene. Much consideration was given to computational stability
with regard to possible inaccuracy of image data. A relaxation scheme was defined which always guarantees the
global consistency of the computed solution. The singularities of the constraint resulting from the local fatness
approximation has also been analyzed. {11]

MOTION PLANNING

Motion planning for a point robot has been studied in a time-varying environment. Obstacles are convex
polygons which move in a fixed direction at a constant speed. The point to be reached (referred to as the desti-
nation point) also moves along a known path. The concept of “‘accessibility” from a point to a moving object is
introduced, and is used to define a graph on a set of moving obstacles. The graph is shown to exhibit an
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ir‘nport,ant. property: if the moving point is able to move faster than any of the obstacles, a time-minimal path is
given as a sequence of edges in the graph. An algorithm has been developed for generating a time-minimal path
and its execution time has been analyzed. [12]

QUALITATIVE NAVIGATION

Visual navigation is a major goal in machine vision research, and one of both practical and basic scientific
significance. The practical interest reflects a desire to produce systems which move about the world with some
degree of autonomy. The scientific interest arises from the fact that navigation seems to be one of the primary
functions of vision in biological systems. Navigation has typically been approached through reconstructive tech-
niques since a quantitative description of the environment allows well understood geometric principles to be used
to determine a course. However, reconstructive vision has had limited success in extracting accurate information
from real-world images. We have shown that a number of basic navigational operations can be realized using
qualitative methods based on inexact measurement and pattern recognition techniques.

Navigational capabilities form a natural hierarchy beginning with simple abilities such as orientation and
obstacle avoidance, and extending to more complex ones such as target pursuit and homing. Within a system,
the levels can operate more or less independently, with only occasional interaction necessary. We have studied
three basic navigational abilities: passive navigation, obstacle avoidance, and visual homing, which together
represent a solid set of elementary, navigational tools for practical applications. It has been demonstrated that
all three can be approached by qualitative, pattern-recognition techniques. For passive navigation, global pat-
terns in the spherical motion field can be used to robustly determine the motion parameters. For obstacle
avoidance, divergence-like measurements on the motion field can be used to warn of potential collisions. For
visual homing an associative memory can be used to construct a system which can be trained to home visually
in a wide variety of natural environments. Theoretical analyses of the techniques have been presented, and
working systems have been implemented and tested. [13]

EARLY VISION

BOUNDARY-PRESERVING REGULARIZATION

Many problems in low-level vision and in several other scientific or engineering disciplines are ill-posed in
the sense that their solutions do not exist, are not unique, or do not depend continuously on the data. We
approach these problems with Tikhonov regularization. That means we seek a solution that is a compromise
between the requirements of consistency with constraints imposed by the data and of consistency with a priori
smoothness assumptions. Unfortunately, the solution obtained blurs boundaries and makes it hard to recognize
where the real world variables change sharply. We approach this difficulty by assuming the errors (the incon-
sistency between data and solution) at nearby points are correlated and we first deblur the errors before regular-
izing. Similarly we have to deblur the smoothness term of our variational condition before we can apply regular-
ization theory. In general decorrelation is a hard problem, but making special assumptions about the blurring
kernel (e.g. the kernel is Gaussian or more generally Levy stable), we can recover the magnitude of the deblurred
error (or smoothness) as a linear expression in terms of the original error (or smoothness) and its derivatives. We
are, in effect, imposing a requirement that not only the error but also its derivatives should tend to be small
(because noise is often far from being white). The resulting variational condition is not the optimal condition
but the Euler-Lagrange equations will be linear if the constraints are. We also suggest a convex approximation
technique for solving the piece-wise smooth interpolation problem which results in a convex condition if the ori-
ginal constraints were linear. [14]

SIGNAL AND NOISE ESTIMATION

When we examine a set of data, it is often “‘obvious” that the data can be interpreted as values of a par-
ticular type of function (e.g., linear) corrupted by a particular type of noise (e.g., zero-mean, spatially station-
ary). We have investigated a qualitative approach, based on Bayes’ theorem, that may justify such interpreta-
tions. We have dealt primarily with data that are samples of a real-valued function of a single variable, but
similar ideas apply to functions of two or more variables, to vector-valued functions (e.g., curves or surfaces), as
well as to the problem of finding natural clusters in sets of points. [15]

An algorithm has been developed and tested for estimating noise variance in images. The only information
available to the algorithm is the corrupted image and the white nature of the zero mean Gaussian noise. The
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algorithm recovers the variance of the noise in two steps. First, the sample variances are computed for square
cells tessellating the noisy image. Several tessellations are applied with the size of the cells increasing four-fold
for consecutive tessellations. The four smallest sample variance values (the outcomes of the first four order
statistics) are retained for each tessellation and combined through an outlier analysis into one estimate. The
different tessellations thus yield a variance estimate sequence. In the second part of the algorithm, the value of
the noise variance is determined from this variance estimate sequence. The algorithm has been applied to 500
noisy 256X 256 images derived from seven prototypes of classes often employed in computer vision and image
processing. In 98% of the cases the relative estimation error was less than 0.2 with an average error of 0.06. All
the operations in the algorithm are parallel and if they are implemented on an image pyramid, the variance of
the noise is recovered in Ollog(image_size)| processing time. [16]

CLUSTER DETECTION IN NOISE

If a feature space contains a set of clusters and background noise, it may be difficult to extract the clusters
correctly. In particular, when we use a partitioning scheme such as k-means clustering, where k is the correct
number of clusters, the background noise points are forced to join the clusters, thus biasing their statistics. We
have developed a preprocessing technique that gives each data point a weight related to the density of data
points in its vicinity. Points belonging to clusters thus get relatively high weights, while background noise
points get relatively low weights. k-means clustering of the resulting weighted points converges faster and yields
more accurate clusters. [17]

Cluster detection algorithms using mean values as center estimates suffer from inaccuracy when the distri-
butions of points in clusters are not Gaussian or when unevenly distributed background noise is present. We
have developed a mode-based cluster detection algorithm using a least median square error measure for the
center estimates. The algorithm locates the centers with reasonable accuracy under biased background noise.
Its complexity is O(n log n) in general, and this is reduced to O(n ) for data on a lattice. [18]

DIFFERENTIATION

Computation of the derivatives of an image defined on a lattice structure is of paramount importance in
computer vision. The solution implies least square fitting of a continuous function to a neighborhood centered
on the site where the value of the derivative is sought. We have developed a systematic approach to the prob-
lem involving orthonormal bases spanning the vector space defined over the neighborhood. Derivatives of any
order can be obtained by convolving the image with a priori known filters. We have shown that if orthonormal
polynomial bases are employed the filters have closed form solutions. The same filter is obtained when the fitted
polynomial functions have one consecutive degree. Moment preserving properties, sparse structure for some of
the filters, and relationship to the Marr-Hildreth and Canny edge detectors have also been established. Expres-
sions for the filters corresponding to fitting polynomials up to degree six and differentiation orders up to five, for

the cases of unweighted data and data weighted by the discrete approximation of a Gaussian, have been tabu-
lated. [19]

LINE FITTING

A method to improve the estimate of least squares line fits to thin stripes in images has been developed.
By using the geometry of local gray level patterns and their contrasts, the accuracy of the least squares line fits
can be improved markedly. The improved method’s performance is comparable to that of the Canny line detec-
tor. [20]

In fitting a straight line to a noisy image, the least square method becomes unreliable if non-Gaussian
outliers are present. We have developed a the Least Median Square (LMS) method, which provides:

- protection against distortion by up to 50% of contaminated data;

- good efliciency in the presence of various type of noise;

- an amount of computation comparable with the least square method. [21]
HYPERACUITY

In spatial hyperacuity the subjects discriminate a stimulus feature relative to a reference, with an accuracy
significantly better than the grain of the retinal mosaic. We have shown that the normalized thresholds have a

dichotomous behavior; they are either insensitive to the spatial parameter in the experiment or increase very
steeply with it. This behavior is explained by the involvement in the processing of pixel (receptor) accuracy
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information about the structure of the stimulus. A computational model employing optimal filtering reproduces

the experimental data and suggests that processing of spatial hyperacuity tasks in the human visual system is
optimal. ([22]

TEXTURE SEGREGATION

We have studied human perception of texture segregation in patterns composed of two textures where each
texture contained two types of elements. The elements were arranged in a striped pattern in the top and bot-
tom regions and in a checked pattern in the center region. The observers rated the degree to which the three
regions were seen as distinct. When the elements were squares or lines, perceived segregation resulting from
differences in element size could be cancelled by differences in element contrast. Minimal perceived segregation
occurred when the products of the area and contrast (areal contrasts) of the elements were equal. This depen-
dence of perceived segregation on the areal contrasts of the elements is consistent with a simple model based on
the hypothesis that the perceived segregation of the regions is a function of their differential stimulation of spa-
tial frequency channels. However, two aspects of the data were not consistent with quantitative predictions of
the model. First, as the size difference between the large and small elements increased, the ratings at the point
of minimum perceived segregation increased. Second, the effect of changing the fundamental frequency of the
textures was not predicted by the model. These discrepancies may be explained by a more complex model in
which a rectification or similar nonlinearity occurs between two stages of orientation- and spatial-frequency-
selective linear filters. [23]

LOCAL OPERATIONS ON DOT PATTERNS

When a local operation is performed on the pixels in an array, the new value of the pixel is a function of
the old values of the pixel and its neighbors. We have introduced the more general concept of local operations
on labelled dot patterns, where the new label of a dot is a function of the old labels of the dot and a set of its
neighbors (e.g., its Voronoi neighbors). Such operations may change the positions of the dots, in addition to
changing their “values”. These ideas are illustrated with examples of operations that perform local feature
detection {e.g., isolated dot detection, cluster edge detection, dotted curve detection) and “enhancement” (e.g.,
“smoothing’ the dot spacing or “sharpening’ the edges of diffuse clusters), as well as ‘“morphological” opera-
tions. [24]

MATCHING

ORDERED MATCHING

Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel com-
parison of the pixels in the image and in the template. If we have probabilistic models for the classes of images
being matched, we can reduce the expected computational cost of matching by comparing the pixels in an
appropriate order. We have shown that the expected cumulative error when matching an image and a template
is maximized by using an ordering technique. We have also presented experimental results for digital images,
when we know the probability densities of their gray levels, or more generally, the probability densities of arrays
of local property values derived from the images. [25]

A generalization of the ordered matching problem is the problem of optimally ordering a set of operations,
the outcomes of which are random. We have developed procedures for finding the optimal dynamic strategy and
the optimal static strategy for solving this problem. We have also considered a constrained form of the problem
and shown that it has a simple optimal strategy, and we have investigated the complexity issues involved in
finding optimal strategies. [26]

LOCATION SELECTION IN MATCHING

We have developed a technique to further reduce the computational cost of template matching by using
probabilistic knowledge about local features that appear in the image and the template. Using this technique
the most probable locations for successful matching can be found. We have analyzed how the size of the
features affects the computational cost and the robustness of the technique. We have shown experimentally that
even simple methods of feature extraction and representation can reduce the computational cost by more than
an order of magnitude. {27]
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MATCHING RUN LENGTH CODES

We have developed an algorithm to reduce the computational cost of template matching by using run
length representation of the image and the template. Using this technique we compare only locations in the
image and the template where the total mismatch accumulation may change. This method works best for
images and templates with long runs. We have studied conditions under which the algorithm will be efficient,

and tested it experimentally on both randomly generated and real images. In some cases, using this approach
yields more than 20-fold speedup. [28]

MATCHING POLYGONAL ARCS

We have developed an efficient algorithm for matching two rectilinear polygonal arcs. We first show how
to match two arcs of the same length by decomposing them into a set of pairs of corresponding straight line seg-
ments having the same length. The distance measure of each such pair of line segments is calculated by refer-
ring to the distance of one of six possible configurations of pairs of segments. We then show how to find the
relative position of the two arcs which yields the best match by minimizing the distance function. After analyz-
ing the case of arcs having the same length, we show how to use the results and a representation of rectilinear
arcs as strings generated by four primitives to obtain an efficient algorithm for arc matching. This algorithm is
based on our earlier algorithm for run-length string matching. [29]

BOOLEAN OPERATIONS ON POLYGONS

A robust algorithm for set operations on pairs of polygons has been developed. The algorithm is capable of
operating on the class of vertex-complete polygons which properly includes the simple polygons. The algorithm
uses carefully chosen data structures and is easy to describe. We have given a proof of its correctness and an
analysis of its complexity. [30] It has also been generalized to sets of polygons, using a boundary representation
for the input and output polygon sets. The polygons in each set can be either island or hole polygons. We show
how to make the basic algorithm more efficient by using inclusion trees that can be built from the polygons in
each set. The implementation is table-driven and is facilitated by the use of efficient data structures. The algo-

rithm can be applied to eflicient matching of images that can be decomposed into regions having polygonal
boundaries. [31]

MAP REGISTRATION

To obtain a map of the ocean floor, a multibeam echo-sounder system capable of measuring depth is
installed aboard a ship. The ship sails for several miles along a straight track and collects a swath of depth
data. Then it changes its course and collects another swath of data, doing this repeatedly in such a way that
each swath overlaps with a few others. However, because in the middle of the ocean it is very difficult for the
ship to know its accurate position, the overlapping swaths are almost always misregistered with respect to each
other. We have developed an automated system for obtaining a correctly registered map of the ocean floor.
Because each swath of data overlaps with several others, the registration is performed both at local and global
levels. The “primitives’” used for local matching are contours of constant depth which are extracted from the
data and are represented by means of a modified chain code method. The main heuristic guiding the search for
matching contours of equal depth is their apparent proximity to the middle of the unregistered overlapping
region. The degree to which two contours match is determined by the correlation of their respective chain codes
and the geometrical proximity of their nodes. All “best’”” matches are considered tentative until their geometri-
cal implications are evaluated and a consistent majority has emerged. To do global matching a cost function
has been constructed and minimized. Terms contributing to the cost include violation of local matches as well
as compression and bending of the swaths of data. (32

SYMBOLIC MODEL MATCHING

Existing expert vision systems generally match models to images using only numeric ‘“goodness-of-fit”
measures. The computation of such measures usually involves the combining of incommensurate quantities and
the loss of low level knowledge that could be useful at higher levels. The methods employed, and hence the
software developed, often cannot be generalized for use within other domains or at other levels of abstraction.
We feel that there is a need for a more general symbolic image/model matching paradigm, and for the develop-
ment of software tools that implement it. We have formulated motivations for the development of a general
purpose symbolic matcher, developed an implementation, tested it on real-world image lata, and discussed
important requirements that any such system ought to meet. [33]
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PARALLEL ALGORITHMS

GRAPH MATCHING

We have performed experiments with a parallel algorithm for matching attributed relational graphs. The
algorithm generates a state space tree in a breadth-first manner and then evaluates the tree by computing the
edit distance for each candidate solution. The parallelization method used is best suited for MIMD-type comput-
ers. The first target machine is the Butterfly Parallel Processor, in which the programs were developed on Uni-
form System software supporting a shared memory model of computation. The second multiprocessor is a link-
oriented Transputer-based system. In this system, concurrent processes communicate through message channels.

The experiments showed that nearly linear speedup can be achieved by parallelizing the algorithm in the outer-
most loop. [34]

BORDER TRACKING

We have studied parallel implementation of a generalized one-pass algorithm for border tracking of objects
in thresholded binary images. The input image is scanned from top to bottom, from left to right. On each row,
partial border descriptions produced on previous rows are updated according to run ends on the current row.
Borders are represented by crack code strings following the outer borders in a clockwise direction, and the inner
borders in a counterclockwise direction. The parallelized version of the algorithm has been implemented on a
Butterfly Parallel Processor. The program was developed based on the Uniform System approach. The input
image is partitioned into equal sized blocks, and each partition is assigned to a separate processor. Partially
completed border descriptions gathered from the blocks are finally merged in paraliel. [35]

POSE ESTIMATION

We have implemented Linnainmaa and Harwood’s pose determination algorithm on the Butterfly Parallel
Processor (BPP) and Hathi 2 parallel computers. The architecture of the BPP is based on a shared memory
model, whereas the Hathi 2 is based on a distributed memory model. The algorithm is computationally very
intensive, which makes it suitable for parallel processing. The program was parallelized using the processor farm
technique, thus enabling automatic load balancing. The experiments show that the algorithm is very easy to
parallelize. Furthermore comparison of the two architectures shows that the Hathi 2 is much more powerful
than the BPP. Due to different implementation technologies, it is not, however, possible to say whether one of
the architectures is in general better than the other. [36]

HIDDEN SURFACE COMPUTATION

We have developed a data parallel quad-tree algorithm for computing hidden edges in a scene consisting of
polygons in 3-space. The algorithm is based on Warnock’s hidden-edge algorithm, but actually computes a
quad-tree representation of the image, rather than the image itself. It runs in time proportional to the number

of polygons in the scene and to the log of the desired resolution. It has been implemented on the Connection
Machine. [37]

GENERALIZED MATRIX INVERSION

The generalized inversion of a matrix has many applications. We have studied the parallel implementation
of the Ben-Israel-Greville algorithm for finding the Moore-Penrose inverse of a matrix. This algorithm is highly
suitable for data-level parallelism and has several advantages: linearity, stability, reliability, determinism and
scalability. Connection Machine experiments with random matrices of different dimensions have been per-
formed. [38]

Theoretical results concerning partitioning of large matrices for g-inversion have also been investigated,
and the complexity and performance analysis of these methods on the Connection Machine have been studied.
It turns out that the use of the virtual processor configuration on the Connection Machine is of comparable
efficiency to using any partitioning scheme, when the multiplicative iterative scheme is used for g-inversion. {39

TENSOR PRODUCTS

Tensor products are widely used in the evaluation and interpolation of functions as well as 2D and 3D
image blocks. We have also implemented the tensor product method on the Connection Machine. [40)
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SPLINE-BLENDING APPROXIMATION

Wee have studied the projection operator technique for multivariable cardinal spline-blending approxima-
tion on the Connection Machine. This technique requires data-parallel operations for polynomial (single and
multivariable) evaluation and hence is well suited for implementation on the Connection Machine. The basic
operations needed are the inner product and the tensor product of vectors whose components are polynomials or
their evaluated values. Spline-blending approximation has several applications: finite-element methods, digital
image processing, optical flow and topography. [41]

NEURAL NETWORK SIMULATION

Partitioning a set of N patterns in a d-dimensional metric space into K clusters—in a way that those in a
given cluster are more similar to each other than thg rest—is a problem of interest in image analysis, astrophy-
sics and other fields. As there are approximately if(_'- possible ways of partitioning the patterns among K clus-
ters, finding the best solution is beyond exhaustive search when N is large. We have shown that this problem in
spite of its exponential complexity can be formulated as an optimization problem for which very good, but not
necessarily optimal, solutions can be found by using a neural network. To do this the network must start from
many randomly selected initial states. The network has been simulated on the NASA MPP (a 128 X 128 SIMD
array machine), where we used the massive parallelism not only in solving the differential equations that govern
the evolution of the network, but also in starting the network from many initial states at once thus obtaining
many solutions in one run. We have obtained speedups of two to three orders of magnitude over serial imple-

mentations. [42]

PYRAMID SIMULATION

We have developed an algorithm for fast addition on the fat pyramid. The fat pyramid is a pyramid in
which the storage space and the processing power allocated to a single node increase as the root of the pyramid
is approached. The addition algorithm is based on a carry-lookahead technique. The computation time of the
algorithm is proportional to log p + ¢ for operands of size p ¥ q bits, when p processors are used to deal with
the numbers. The addition algorithm was simulated on the Connection Machine. [43]

A pyramid programming environment on the Connection Machine has been developed. The mapping
between the Connection Machine and pyramid structures is based on a scheme called Shuffled 2D Gray Codes.
A pyramid Hough transform, based on computing the distances between line or edge segments and enforcing
merge and select strategies among them. has been implemented using this programming environment. [44]

PYRAMID TECHNIQUES

PYRAMIDS AND PRISMS

An image pyramid is a hierarchy of representations of the input derived by recursive smoothing and deci-
mation. Image pyramids are built in log(image_size) time with the consecutive levels having their size and reso-
lution reduced by a constant factor. Similar structures with the representations decreasing only in resolution but
not in size are also of interest. Such constant size multiresolution representations of the input can be simulated
on image pyramids by increasing the number of values stored in the cells of the host structure. Constant size
representations allow parallel processing in applications such as scale-space filtering and multiresolution edge
detection. [45)]

PYRAMID ROBUSTNESS

Image pyramids have been used by many investigators as computational structures for multi-resolution
image processing and analysis. We have subjected such pyramids to various structural perturbations and inves-
tigated their effects on the functions of the pyramid. The perturbations ranged from adding Gaussian noise to
the weights of the generating kernel, to generating a hierarchy of completely irregular tessellations of the image
field. We have shown that homogeneous parts of the low resolution representations of the input image may be
recovered by renormalizing the corrupted weights. Multi-resolution algorithms transposed to irregular (stochas-
tic) structures exhibited only a small decrease in performance. We conclude that pyramidal algorithms are
robust and are only weakly dependent on the underlying structure. We suggest that some of these pyramidal
algorithms may also serve as computational models for perceptual phenomena. (46|
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BIMODALITY ANALYSIS

The bimodality of a population P can be measured by dividing its range into two intervals so as to max-
imize the Fisher distance between the resulting two subpopulations P, and P,. If P is a mixture of two
(approximately) Gaussian subpopulations, then P and P, are good approximations to the original Gaussians, if
their Fisher distance is great enough. For a histogram having n bins this method of bimodality analysis requires
n ~ 1 Fisher distance computations, since the range can be divided into two intervals in n - 1 ways. The method
can also be applied to ‘‘circular” histograms, e.g. of populations of slope or hue values; but for such histograms
it is much more computationally costly, since a circular histogram having n bins can be divided into two inter-
vals (ares) in n(n -1)/2 ways. The cost can be reduced by performing bimodality analysis on a “reduced-
resolution” histogram having n /k bins; finding the subdivision of this histogram that maximizes the Fisher dis-
tance; and then finding a maximum Fisher distance subdivision of the full-resolution histogram in the neighbor-
hood of this subdivision. This reduces the required number of Fisher distance computations to

n(n -1)/2k%+ O(k). For histograms representing mixtures of two Gaussians, this method was found to work
well for n /k as small as 8. [47]

IMAGE SEGMENTATION

If an 1mage contains regions whose gray level populations differ only slightly from that of the background,
it may be difficult to detect their presence by statistical population analysis, since they may not give rise to
significant bimodality. If the regions are relatively compact, however, in the sense that they do not consist pri-
marily of border pixels, the image’s bimodality can be significantly increased by local averaging. Thus local
averaging followed by bimodality analysis can be used to detect compact regions that differ slightly in gray level
population from their background. This method may also be useful in detecting objects that differ texturally
from their backgrounds, where initial local filtering may yield only slight differences between the object and
background gray level populations in the filtered images. [48]

BORDER DELINEATION

A pyramid technique for delineation of compact objects has been developed. The borders of the objects
are detected in a iow resolution representation of the input, a higher level of the pyramid. The pixels on the two
sides of an edge are the roots for two classes (object and background). The two classes are employed in two
independent top-down tree growing processes. The information is passed downward by adjusting confidence
measures. The employment of multiple roots defined on the smoothed representation of the input contributes to
the robustness of the method at very low signal-to-noise ratios. [49)]

HOUGH TRANSFORM

We have developed a divide-and-conquer Hough transform techuique for detecting a given number of
straight edges or lines in an image. This technique is designed for implementation on a pyramid, and requires
only Of{log n) computational steps for an image of size n Xn . [50]

CONTOUR PROCESSING

A novel hierarchical approach toward fast parallel processing of chain-codable contours has been
developed. The environment, called the chain pyramid, is similar to a regular non-overlapping image pyramid
structure. The artifacts of contour processing on pyramids are eliminated by a probabilistic allocation algo-
rithm. Building of the chain pyramid is modular, and for different applications new algorithms can be incor-
porated. We have implemented two applications: smoothing of multi-scale curves, and gap bridging in frag-
mented data. The latter is also employed for the treatment of branch points in the input contours. A prepro-
cessing module allowing the application of the chain pyramid to raw edge data has also been developed. The
chain pyramid makes possible fast, O{log(image_size)|, computation of contour representations in discrete scale-
space. (51

PICTURE PARSING
We believe that pyramids are a natural architecture for implementing a general method of syntactic pat-
tern recognition. Pyramids can be used to extract syntactic primitives (local features, edges/curves, or regions

of simple shapes) from an image and to compute their properties They can also be used to identify hierarchical
arrangements of primitives, thereby parsing the image (in parallel) in accordance with the rewriting rules of ..
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“‘coordinate grammar”. [52]

GEOMETRY
HEXAGONAL GRIDS

Square and hexagonal spatial samplings, because of their processing ease, are used most widely in image
and signal processing. However, no rigorous treatment of the quantization error due to hexagonal sampling has
appeared in the literature. We have developed mathematical tools for estimating quantization error in hexago-
nal sensory configurations. These include analytic expressions for the average error and the error distribution of
a function of an arbitrarily large number of hexagonally quantized variables. The two quantities, the average
error and the error distribution, are essential in assessing the reliability of a given algorithm. For comparison we
have also computed the corresponding expressions for square spatial sampling, so that they can be used in com-
paring the magnitude of the error incurred in hexagonal versus square quantization for a given algorithm. They
can thus be used to determine which sampling technique would result in less quantization error for a particular
algorithm. Such a comparison is important due to the paramount role that quantization error plays in computa-
tional approaches to computer vision. [53]

METRICS

In computer vision a variety of metrics are used to determine the distance between lattice points. The
three which are encountered most often are city block distance, chessboard distance, and Euclidean distance. A
set S of lattice points will be said to be (r, s)-metrically independent if the congruence of $ and T under the r
metric implies congruence under the s metric for every digital set T. Necessary and sufficient conditions are
obtained for sets to be metrically independent with respect to the three given distances. Conditions on the

interpoint distances are also determined which permit a set to be imbedded in the digital plane with these
metrics. [54]

DIGITAL GEOMETRY ON GRAPHS

Many of the standard concepts of digital geometry, particularly those involving connectedness and distance
properties of subsets of a digital image, can be generalized to subgraphs of an arbitrary graph G. Algorithms
for connected component labeling, distance transform computation, etc., can be defined that require time O(n),
where n is the number of nodes of (. Parallel algorithms for these computations can also be defined, using
various modes of parallel computation. We can also define “‘continuous” integer-valued functions on graphs, and
can show that the distance transform is the largest such function having (at least) a given set of zeros. [55]

CONTOUR CODES

An isothetic polygonal arc is one that has all its sides oriented in two orthogonal directions, so that all its
angles are right angles. Such an arc is determined (up to congruence) by specifying a ‘“‘code” sequence of the
form a; Ayag - - ap.| Ay @,,, where the a’s are positive real numbers representing side lengths, and the A’s
are single bits that specify whether the arc turns left or right between one side and the next. We have
developed basic properties of this code, and shown how to derive various geometric properties of the arc (or the
region it bounds, if it is closed) directly from the code. [56]

MEDIAL AXIS TRANSFORMS

The Medial Axis Transform represents a region of a digital image as the union of maximal upright squares
contained in the region. We have studied the problem of computing geometric properties of the image from a
representation that generalizes the squares to rectangles. We have given algorithms for a number of problems
using n processors where n is the number of upright rectangles. Our algorithms compute the perimeter, eccen-
tricity, center of gravity, moment of inertia and area of the region covered by the rectangles in O(logn) time.
The results are faster than previous results and are optimal (to within a constant factor). The contour of such a
region may contain as much as O(nz) pieces; our algorithm computes the contour with a worst case running
time of O(n). We also give an optimal parallel algorithm to construct the medial axis transform representation
given an array representation of the image. [57)
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DOT PATTERNS

We have defined random processes that generate planar dot patterns in which the dots have a tendency to
cluster, or in which clustering is inhibited. We have also defined processes for labeling a given point pattern in
such a way that neighboring points tend to have, or not to have, the same labels. The patterns generated by

such processes can serves as test data for image analysis algorithms that operate on spatial configurations of
local image features. (58]

MARKOV RANDOM FIELDS

Generating a Markov random field image is a computationally very expensive process on a sequential pro-
cessor. We have developed a parallel algorithm to perform this task and have implemented it on the Connection
Machine. We show on theoretical and experimental grounds that a 40% degree of parallelism is optimal for this
algorithm. In our implementation we demonstrate a 40% degree of parallelism and an effective speedup of more
than 70 times over the sequential implementation on a Vax 11/785 running Unix. [59]

OTHER TOPICS

TESTING GEOMETRICAL CONFIGURATIONS

We have developed a general formulation for testing particular geometrical configurations of image data.
The procedure consists of hypothesizing and testing: We first estimate an ideal geometrical configuration which
supposedly exists, and then check to what extent the original edge data must be displaced to support the
hypothesis. Thus, all types of tests are reduced to computing a single measure of edge displacement without
involving ad-hoc measures and threshold values depending on the problem. Also, no explicit forms of probability
distribution need be introduced. All the procedures are described by explicit algebraic expressions in unit vec-
tors which represent points and lines on the image plane, so that no computational overflow occurs and no
searches or iterations are required. [60]

IMAGE INTERPRETATION: PROGRAMMED PICTURE LOGIC

The objective of the PPL project is to design and implement a general and modular logic-programmed sys-
tem for two-dimensional interpretation of image theories in image structures obtained by image analysis. Impor-
tant subsystems include heuristic search for object instances with optimization of goodness-of-figure, and pro-
cedures for computing basic image components, locales for searches, and predicates. Some of these have been
illustrated in an application to aerial images of suburban neighborhoods. [61]

PLANNING

The value of enabling a planning system to remember the plans it generates for later use was ack-
nowledged early in planning research. The systems developed, however, were very inflexible as the reuse was
primarily based on simple strategies of generalization via variablization and later umnification. We have
developed an approach for flexible reuse of old plans in the presence of a generative planner. In our approach
the planner leaves information relevant to the reuse process in the form of annotations on every generated plan.
To reuse an old plan in solving a new problem, the old plan along with its annotations is mapped into the new
problem. A process of annotation verification is used to locate applicability failures and suggest refitting stra-
tegies. The planner is then called upon to carry out the suggested modifications—to produce an executable plan
for the new problem. This integrated approach obviates the need for any extra domain knowledge (other than
that already known to the planner) during reuse and thus affords a relatively domain-independent framework for
plan reuse. We have studied the realization of this approach in two disparate domains {blocks world and process
planning for automated manufacturing) and have proposed extensions to the reuse framework to overcome
observed limitations. We believe that our approach to plan reuse can be profitably employed by generative
planners in many applied domains. [62]

DISTRIBUTED LEARNING
Most methods of learning in distributed environments are based on gradient descent algorithms that

involve changing the weights of the network in order to minimize the difference between the expected and actual
input-output behaviors. The successes of such “‘motion in weight space’” methods have been limited due to their
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inability to capture the implicit constraints of the behavior and properly distribute them among the units of the
network. An alternative system has been developed, one based on motion in constraint space. It relates the
input-output behavior of a connectionist network to a Boolean expression in disjunctive normal form, where each
hidden unit of the network learns to detect one of the conjunctive parts of the expression. The potential con-
straints at a processor are the states of an input configuration that correctly activates the outputs. These con-
straints are added and removed from the processors in such a way that the correctness of the behavior of the
network is maximized. Unlike gradient descent methods, which may become trapped in local minima, or simu-
lated annealing methods, which may need an infinite amount of time to reach a good state, this system deter-
mines a correct solution to many problems very quickly. Unlike most traditional “machine learning’’ algorithms,
this system can learn concepts in parallel, is capable of continuously adapting to new information, and is highly
resistant to feedback error. Applications to problems such as recognizing (learning) 2-D shapes (such as fish
tails) show the potential of the applicability of the method to practical problems. (63, 64
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Image Understanding and Robotics Research
at Columbia University

John R. Kender!
Peter K. Allen
Terrance E. Boult

Department of Computer Science
Columbia University, New York, NY 10027

0 Introduction

Over the past year, the research investigations of the Vision/Robotics Laboratory at Columbia University
have reflected the interests of its four faculty members, two staff programmers, and 16 Ph.D. students. Several of
the projects involve other faculty members in the department or the university, or researchers at AT&T, IBM, or
Philips. We list below a summary of our interests and results. together with the principal researchers associated
with them. Since it is difficult to separate those aspects of robotic research that are purely visual from those that
are vision-like (for example, tactile sensing) or vision-related (for example, integrated vision-robotic systems), we
have listed all robotic research that is not purely manipulative.

The majority of our current investigations are deepenings of work reported last year; this was the second
year of both our basic Image Understanding contract and our Strategic Computing contract. Therefore, the form
of this year's report closely resembles last year's. Although there are a few new initiatives, mainly we report the
new resuits we have obtained in the same five basic research areas. Much of this work is summarized on a video
tape that is available on request.

We also note two service contributions this past year. The Special Issue on Computer Vision of the
Proceedings of the IEEE, August, 1988, was co-edited by one of us (John Kender [27]). And, the upcoming IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, June, 1989, is co-program chaired
by one of us (John Kender [23)).

0.1 Low-Level Vision

0.1.1 Polarization and Specularities
1. New methods for using polarization to segment specular highlights and to separate reflectance
components (Larry Wolff [44, 49]).

2. New methods for classifying material surfaces into conductors and dielectrics using the polarization
of specular highlights (Larry Wolff, and Terry Boult [45, 50, 51, 52]).

0.1.2 Iimage Warping
1. A survey of image-warping techniques (George Wolberg [40]).

2. A novel data structure and algorithm for waming to and from arbitrary shapes (George Wolberg
{41, 39)).

3. A new, highly efficient, general method for achieving 2-D image warps by separating the transform
into two successive 1-D warps (George Wolberg [42, 43]).

0.1.3 Optic Flow, and Rotational Motion

1. New, provably optimal algorithms for determining optic flow based on smoothing splines (Anargyros
Papageorgiou, David Lee of AT&T Bell Laboratories, Greg Wasilkowski of the University of
Kentucky [30]).

'This work was supported in part by the Defense Advanced Research Projects Agency under contracts N00039-84-C-0165 and
DACA76-86-C-0024.
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2. New algorithms for the smooth interpolation of rotational motions (Ken Roberts, and Kicha
Ganapathy and Garry Bishop of AT&T Bell Laboratories [31]).

0.2 Middle-Level Vision

0.2.1 Physical Stereo
1. A unified theory of generalized physical stereo vision for the determination of several first and
second order local surface properties (Larry Wolif [46, 53]).

2. A new method for determining local surface orientation from a continuous variation of photometric
stereo, called "photometric flow fields" (Larry Wolff [47, 54, 55]).

3. A new invariant within two-camera stereo that allows the determination of the orientation of lines
and surfaces in a manner insensitive to baseline measurement error (Larry Wolff [48, 56, 57]).

0.2.2 Regularized Surface Reconstruction
1. A critical study of regularization methodology (Terry Boult [8]).

2. Investigations into the stability and error properties of a new integrated stereo matching, surface
reconstruction, and surface segmentation (Terry Boult, Liang-Hua Chen, and Mark Lerner [9, 13]).

0.2.3 Sensory Fusion
1. A new method for classifying textures based on the relative contributions of independent texture
methods to a fused texture percept (Mark Moerdler [28]).

2. A method for fusing texture and stereo (Mark Moerdler, and Terry Boult [29]).

3. A working system, now in production, for the spline-based recovery of smooth oceanographic
positional information from noisy, conflicting input (Terry Boult, and Barry Allen of Columbia
University's Lamont-Doherty Geological Observatory [10]).

4. An initial reexamination of depth-from-focus, for possible use in fusing with stereo and/or texture
(Terry Bouit).

0.2.4 Shape from Dynamic Shadowing

1. A patent for shape from darkness, a discrete method for deriving surfaces from dynamic shadows
(John Kender, and Earl Smith [26]).

2. A paralielizable, optimal algorithm for shape from continuous shadows (Michalis Hatzitheodorou,
John Kender [20, 21]).

0.3 Spatial Relations

0.3.1 Representations of Objects
1. An elegant representation for lines in three-space (Ken Robenrts [32]).

2. New, robust measures for the error of fit of superquadric models to range data (Ari Gross, and Terry
Boult [17, 18)).

3. An investigation into efficiently-computable invariants that quickly relate reflectance information to
certain classes of generalized cylinders (Ari Gross).

4. The design and initial implementation of a system to numerically recovery the parametric
representations of volumes from multiple types of data, and multiple sensor types (Terry Bouit).

5. New algorithms for efficient viewpoint planning (Dino Tarabanis, and Roger Tsai of IBM Watson
Laboratory [38)).
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0.3.2 Representations of Space
1. A survey of algorithms for the representation of space and free-space path planning (Monnett
Hanvey [19]).

2. An analysis of the complexity of efficiently updating of digital distance maps in dynamic, greater
than 2-D, environments (Terry Bouit [11]).

0.3.3 Theory and Practice of Navigation

1. An analysis of the complexity of topological navigation by landmarks, with applications to the design
of sensors and robot instruction languages (John Kender, Avraham Leff, and il-Pyung Park
{24, 25)).

2. Systems issues in real-time robotic navigation (Monnett Hanvey, and Russ Andersson of AT&T Bell
Laboratories).

0.4 Parallel Algorithms

0.4.1 SIMD Algorithms
1. Analysis of two novel and several existing algorithms for depth interpolation using optimal numerical
analysis techniques (Dong Choi, and John Kender {14, 15, 16]).

2. A method for shape-from-texture based on distortions in image autocorrelation (Lisa Brown, and
Haim Schvaytzer of Cornell University [12]).

3. Programming environments and image pyramid emulation for the Connection Machine (Hussein
Ibrahim, Lisa Brown, and John Kender [22]).

0.4.2 Pipeline Algorithms
1. Grey-level corner detection in real time (Ajit Singh, Mike Shneier of Philips Laboratories {33, 34]).

2. An integrated system for real-time visual object tracking (Peter Allen [1, 4]).
3. New algorithms for motion perception in real time (Ajit Singh [35, 36, 37)).

0.5 Robotics and Tactile Sensing

0.5.1 Integrated Environments

1. Integrated environments (Peter Allen, Paul Michelman, Ken Roberts, Amy Morishima, and Steve
Feiner [2, 5, 6]).

0.5.2 Multi-fingered Object Recognition
1. Haptic recognition via active exploration with a robotic hand (Peter Allen, Ken Roberts [3, 7]).

We now detail these efforts, many of which are documented by full papers in these proceedings. We also
include short discussions of work in progress.

1 Low-Level Vision
We have explored three areas of low-level vision, and the results that we have obtained in each of them
came via the careful exploitation of new equations, representations, or settings for standard, traditional problems.

1.1 Polarization and Specularities

Prior to this research, the segmentation of specular highlight regions, and the separation of reflected light
into diffuse and specular reflection components, could only be solved on dielectric materials (insulators).
Additionally, previous algorithms were sensitive to color. However, by using polarization information, specular
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regions can be identified on both metals and dielectrics on a per-pixel basis, without the use of a segmentation
procedure, as long as a controllable polarizing fiter can be placed between the camera and the object. Most
ordinary light sources are unpolarized, but light reflected off dielectrics tends to be much more polarized and is
more easily separated. A few minimal restrictions on the phase angle between light, object, and camera, must
apply; these and other qualitative statements have be made quantitatively precise. Initial experimental evidence
is very encouraging, on a variety of metals, insulators, and metallic and non-metallic paints and glazes [44, 49).

Closely related to this method--indeed, derived from the same equations--are new methods for classifying
material surfaces into conductors or dielectrics by using the polarization of specular highlights. As with the
segmentation algorithms, they depend on the empirical determination of the polarization Fresnel ratio. Originally
developed for use with point sources, the methods have also been extended to allow their computation to be
based more typical extended sources, such as fluorescent tubes [45, 50, 51, 52].

Because both classes of algorithms have the same initial front-end requirements, both can be run in parallel
on the same image for simultaneous material classification and separation of reflection components. In addition,
a third class of algorithms can exploit further relationships implicit in equations for the polarization of reflected
light, in order to determine local surface orientation properties (discussed below, under "middle-level” vision).
Thus, the theory unites three very different roles of early vision: object composition, object position and
orientation, and environmental lighting and reflections. Under construction is an integrated set of vision
algorithms that does these (and other) tasks, called POLARIS, for POLarization And Radiometric Integrated
System.

1.2 Image Warping

Many imaging situations call for small tocal geometric corrections on the retina; many graphic situations call
for large ones. Remote sensing, medical imaging, and television commercials with special effects all share the
need to elastically deform images to some ground truth or some aesthetic demand. Done in software, image
warping can be thought of as a reconfigurable lens system. The existing technology is extensive, but relatively
slow, constrained by numerous side conditions, and subject to many errors and aberations. A search for better
algorithms resulted first in a comprehensive survey of image-warping techniques [40]).

The literature is largely silent on the problem of efficiently and smoothly mapping between two image
regions which are delimited by arbitrary closed curves; such regions do not have the universally assumed four
corners. The second result was the specification and verification of an algorithm that instead treats an image
region as a collection of interior layers around a skeleton [41, 39]. These layers impose a type of local polar
coordinate system which allows each shape to be "unwrapped"” into a tree-like representation. Region-to-region
warping is then defined by a natural mapping between the two resulting trees. Although there is no a priori way of
defining quality of mapping, the results are aesthetically pleasing.

The third and most recent product is a new, highly efficient, general method for achieving 2-D image warps
by separating the 2-D transform into two successive 1-D warps [42, 43]. It therefore extends the power of existing
hardware systems that perform more limited classes of transformations by similar decompositions. However, this
method shows that off-the-shelf hardware, in the form of digital filters with only minor modification for 1-D image
resampling, can be used to realize arbitrary mapping functions cheaply and at video rates.

Further work will make use of this approach for performing high-speed elastic matching of deformed
images. By using the spatial lookup tables introduced here, improved metrics for the quantification of deformation
are possible. Extensions to 3-D may also be straightforward.

1.3 Optic Flow, and Rotational Motion

Optic flow computations are traditionally cast as continuous partial difterential equations, but then are
solved by discrete difference methods. Although there have been numerous approaches to the problem, differing
in both equations and boundary conditions, few results have been obtained concerning the quality of solutions
and their error. However, when the problem is cast in the domain of smoothing splines, and if boundary flow
values obey Dirichlet constraints, several results are possible [30). There is a unique solution; sparse, iterative
methods can be sued to solve the resulting discrete system; error can be predicted. Further, the Chebyshev
method of solution requires little global exchange of information, so it is eminently suited for parallelization. These
results appear to be applicable to other low-level vision problems as well.

Looking now instead to the problems of smooth flow by a single object in three space, it is apparent that the
understanding and interpolation of rotational motion (as in a "perfect spiral” football pass) is important in computer
animation, robot control, and hypothesis-guided computer vision. A new, closed-form algorithm for doing so has
been implemented, based on representing motions as quaternions on the unit three-sphere [31]. Resulting
displays of interpolated values, and the computer animation sequences based on them, are smoother and more
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perceptually realistic than existing methods.

2 Middle-level Vision

We have exploited the theory of physical stereo to produce many methods for determining object position,
orientation, and curvature. There are at least five now. We have found several powerful alternatives to standard
regularization methods, and one of them has led to a non-traditional, one-step method for stereo matching,
surface reconstruction, and segmentation. It forms the further basis for a novel stereo-texture fusion system, and
holds the promise of further fusion work, possibly with depth-from-focus. The fusion work has already lead to an
operational system in use outside the vision community. Research on shape-from-shadows has yielded a patent
and optimal, parallelizable, distributed algorithms.

2.1 Physical Stereo

The theory of generalized physical stereo has produced five different applications at the middle ieveis of
vision.

In the first, local surface orientation can be calculated by varying the wavelength and/or the linear
polarization of a single incident light source [53]; only two settings of a polarizer are necessary for uniqueness of
solution. This is a motionless variation on photometric stereo, and has been one of the earliest results from the
theory. However, further study of the method has shown that the process of computing local surface normals can
be made to rely simply on the empirical determination of the polarization Fresnel ratio; this is the same parameter
necessary for determining the materials of an object and the components of a reflection. Thus, a formerly impilicit
factor is now seen to be a unifying parameter.

More practically, a second new technique to measure local surface orientation has been based on a more
complete theory of the reflection of light. This theory combines the Torrance-Sparrow theory of reflection with the
Wolff polarization theory of “quasi-monochromatic™ (monochromatically filtered) light [46]. The technique enables
surface orientation to be uniquely measured in arbitrary lighting by placing a simple monochrome fitter and a
linear polarizer in front of the sensor; two images taken at two orientations of the polarizer suffice. The equations
that govern the calculations, called the polarization state matrix equations, are elaborate, but they are only a
special case of the larger family of generalized physical stereo imaging equations.

These equations can be exploited to derive a third technique: the accurate determination of second order
variations of smooth object surfaces as a function of height above the image plane. This technique uses a
generalization of surface Hessian methods, which overconstrains the solution for the surface Hessian matrix,
giving the second order variations of the smooth surface.

A fourth and very recent method for determining local surface orientation is based on a new imaging
concept, the "photometric flow field" across an optic sensing array {47, 54, 55]. Conventional optic flow considers
the rate of change in the physical position of the image of an object, as the object actually moves in three-space.
In contrast, photometric flow considers the rate of change in the image irradiance of the image of a stationary
object, as the illumination geometry moves in three-space instead. Such photometric flow fields can be used to
determine local surface orientation and surface curvature. The method may be generalizable to extended light
sources.

A fifth corollary to the theory of generalized physical stereo is a method to compute surface orientation from
the stereo correspondence of linear features such as polygonal edges, or internal linear markings or texture

[48, 56, 57]. It is in contrast to standard stereo, which uses point correspondences to compute the orientation of
a plane from the 3-D position of three or more coplanar points. Stereo using line correspondence instead
computes the orientation of a plane from the orientations of two or more coplanar lines. In the ideal world these
two methods are exactly equivalent. But in the experimental world with measurement error, the errors inherent to
measurement of surface orientation from line correspondence stereo does not grow nearly as fast with respect to
baseline translation errors or with respect to distance from the baseline. Analysis and Monte Carlo simulations are
shown to support this. There may be other vision algorithms which use also profit from the use of equivalent
geometric constructions to combat error.

2.2 Regularized Surface Reconstruction

Defining the meaning of "smooth surface” is one of the burdens of surface regularization. In a survey
paper, some of the benefits promised by the regularization framework are contrasted to some of its unheraided
difficulties, particularly the problems of determining appropriate functional classes, norms, and regularization
stabilizing functionals [8]. When regularization is subjectively tested via established procedures of psychology,
the results of the methodology applied to the surface reconstruction problem often gives worse results than
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certain other non-traditional formulations (which are also presented and analyzed).

One of these non-traditional methods provide the basis for a non-heuristic algorithm which simultaneously
reconstructs surfaces and segments the underying data according to the same energy-based smoothness
measure [9]. It is founded on the use of reproducing kemel-based splines, which allow efficient calculation of
upper and lower bounds on surface energy. The system naturally deals with occluded objects, and also with
sharply slanted surfaces, such as roads as seen from a vehicle.

This work on non-heuristic segmentation has been further extended into the development and testing of a
new unified approach to stereopsis; it identifies the stereo matching criteria with the already combined non-
heuristic reconstruction and segmentation criteria [13]. This energy criterion can be interpreted as a measure of
match ambiguity, which is used to rank order all potential stereo matches. Stereo matching, surface
reconstruction, and surtace segmentation are therefore done in one step, according to one criterion. In tests so
far, the method results in fewer unmatchable features than the Marr-Poggio-Grimson method. A parallel
implementation is planned, to be followed by comparative performance analyses under various formulations of
surface energy, and for various scenes.

2.3 Sensory Fuslon

Existing work on the fusion of five different shape-from-texture methods has suggested a novel approach
for classifying textures [28]. Each of the methods is tuned to certain image phenomena; the five are shape from
spacing, shape from orientation, shape from size, and shape from absolute and relative eccentricity. Given a
single texture patch, particularly one under perspective, each method will respond differentially according to the
degree it believes the patch possesses cues that the method can exploit to derive shape information. These
differential strengths can now all be gathered together as a signature feature vector for the texture. Although
such vectors may not have any easily assignable “natural meaning”, they can be manipulated in the usual way by
standard pattern recognition or image segmentation techniques.

Having found ways of integrating into one process the three steps of stereo perception, and into another
process five methods of texture perception, it was inevitable that the two processes themselves would be fused

[29]. The resulting system now combines information in two fundamentally different ways, by intra-process and
inter-process integration. For standardization reasons, inter-process integration necessarily incorporates a priori
assumptions about surfaces, such as degrees and measures of smoothness; it comr—inicates such data in a
standardized way via a blackboard organization. fn operation, the stereo process uses u:e relative accuracy and
sparseness of the centroid of texels to begin feature localization, later switching to traditional zero-crossings. The
work is further characterized by the choice of smoothness measure; roughly it minimizes variation in the 1.5
derivative, not the second. Final integration is achieved by weighting the surface constraints that are output by a
process, by an amount that is inversely proportionally to the peak number of constraints a process can output;
otherwise stereo, which is denser, would always outrank texture processing.

Applying this fusion technology to a real-world problem led to the successful completion of an operational
system for oceanographers. These programs, now in constant use by researchers mapping strctures beneath the
ocean floor, integrate navigational and positional information in order to recover the path of smoothly moving
ocean vessels. The system's use of smoothing splines is backed by a clever heuristic to ignore faulty outliers in
the data. The analysis and review of the project includes documentation of the negative results produced by
more standard, "optimal" methods [10]).

Further pursuing the idea of multi-sensor fusion, initial re-implementation and testing has begun on
algorithms for depth-from-focus. The experimental project will implement the three leading depth-from-focus
algorithms, in order to comparatively determine their cost/accuracy trade-offs. The most efficient one becomes a
candidate for further sensor fusion studies.

2.4 Shape from Dynamic Shadowing

The discrete version of a method for extracting surface shape information based from object self-shadowing
under moving light sources has been awarded its patent [26).

The continuous version has seen extensive analysis, leading to a optimal, parallelizable algorithm [20, 21].
The two-dimensional problem is solved by decomposing it into a series of one-dimensional slices in the plane of
the moving light source; these can be solved in parallel. Each strip is computed using as a basis a family of
interpolating splines of an pnusual piecewise linear form. The solution is checked against a side system of
inequalities in order to preserve the implicit information that points interior to a shadowed region must lie below
that shadow line; if the solution fails, a non-linear approximation algorithm accommodates the failing constraints.

The problem has a natural parallelization, not only into slices, but also into hill-and-valley segments; the
latter parallelism has been implemented on a loosely coupled network of workstations. A smoothing spline
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approach has been developed to regularize noisy data. The question of optimal information (i.e., where to put the
illuminants) has been solved in some very restricted cases; basically, the problem is dominated by the tangent of
the incoming light ray angle. A full analysis of optimal light placement is being pursued.

3 Spatial Relations

We have invented, explored, or improved several representation schemes for objects they occupy and the
light they reflect or obscure: lines, polyhedra, superquadrics, generalized cylinders, and sensor models. We have
(literally) surveyed the representations of empty space, and how the representations can be efficiently changed as
objects move. Even in one dimension, navigation is provably hard; we are examining two and more, in simulation
and in the lab.

3.1 Representations of Objects

A new representation for a line in Euclidean three-space has been discovered, which uses only four
parameters, the minimal number allowable, and still avoids singularities and special cases[32]. Without
sacrificing convenience of computation, it is no longer necessary to represent lines in the more traditional six-
parameter forms (such as Plucker coordinates, or point-and-orientation form), aithough the new representation
has the added advantage that it is easy to convent to those forms. The representation, involving two parameters
for position and two for orientation, readily generalizes to Euclidean n-space, where it uses 2n-2 parameters: n-1
for position, and n-1 for orientation.

When modeling objects by means of superquadrics, the primary concern in parameter estimation is the
proper choice of the error-of-fit measures that control the nonlinear least square minimization techniques. The
effectiveness of four such measures was tested on many examples using noisy synthetic data and actual range
images, including multiple views of the same object, and including a superellipsoid with negative volume--the
latter being an important primitive for constructive solid geometry-based modeling. Existing measures of fit
appear inadequate, and a new one that performs significantly better was developed and verified [17]. In process
is the verification of these predicted differences in complete recovery systems using real data.

A related model of volumes, generalized cylinders, is not nearly as well-defined as superquadrics are. Only
certain subclasses appear to be well-specified and well-behaved under reflectance. 1t would be valuable to be
able to quickly and cheaply test an image for the presence of a member of one of these subclasses; these tests
could serve as gatekeepers to more expensive algorithms in a general polymorphic shape recovery system. The
test need not calculate any parameters; it might exploit invariants that simple confirm or deny membership without
any attempt at reconstruction. One such subclass, the straight homogeneous generalized cylinders, can be
shown to possess a limited form of such invariants, under various rotational transformations and imaging
conditions [18). The test make good use of contour information as well as image intensity; contour is most useful
in recovering the axis, and intensity in recovering any tiit. A prototype system is under construction.

Another new project, the PROVER System (Parametric Representation of Volumes: Experimental
Recovery System) is designed to allow numerical recovery of parametric representations from mutltiple types of
data, and multiple sensor types. An important feature of the system is its use of explicit sensor error modeis.
Initial implementations are underway, and a prototype system with restricted parametric representations and data
types is already running. The system will be used to develop accurate sensor error models, and will help
demonstrate the effect of such models in the recovery of parametric volumes. Because of the significant
computation cost of the approach, a parallel implementation is already underway.

Experience with merging multiple sensor data sources usually results in examining the sensor modeling
problem from the perspective of the automatic generation of viewpoint, geometric, and sensing constraints.
Assuming an assembly or an inspection domain, such an analysis is based on both CAD/CAM object models and
low-level sensor models. The emphasis is on the automatic and intelligent handling of partial object descriptions,
and partial or total sensor occlusions. The automatic generation of sensor viewpoint is a natural place to begin.
The goal is to be able to automatically select a viewpoint for a vision sensor from which features of interest on an
object will satisty particular constraints in the image, among them, visibility. A prototype system has been
developed that computes the regions in space where a face of an object occludes the target features [38]. The
geometric model of the object is polyhedral, but its faces may be concave and multiply-connected.

3.2 Representations of Space

A survey of some 80 papers dealing with environmental representations of mobile robots has been
completed and revised [19]. Most of these representations assume a static two-dimensional world, and a
complete bird’'s-eye knowledge of free space and obstacles. The survey also proposes a taxonomy of this new
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field: it describes map primitives, such as frames of reference and map symbols, and representations, such as
dehydrated free space (mixed polyhedra, and vertex graphs), simple mosaics (tessellations, distance maps, and
quadtrees), and reconstituted free space (convex cells, and freeways). There continues to be a relative paucity of
results on qualitative, topological navigation, however.

Extending previous work on path planning in dynamic environments using digital distance maps [11],
complexity bounds have recently been derived on the constrained distance transform for computing digital
distance maps. Further, the method has been extended to handle path planning with spatially varying distance
metrics. In particular, digital terrain maps (currently synthetic) can provide auxiliary information (for example,
surface height and ground-cover) that affects distance measures in a spatially-varying way. Such spatially
varying distance cost problems are relatively frequent, and vertex based algorithms do not generalize well to
these problems; their strengths under dynamic updating, however, are being investigated.

3.3 Theory and Practice of Navigation

A model has been formalized for topological navigation in one-dimensional spaces, such as along single
roads, corridors, or transportation routes; it demonstrates that the problem is surprisingly difficult computationally
[24, 25). The model includes three levels of abstraction: the concepts and representations of the world itself (a
version of "Lineland"), the world as abstracted into symbols and landmarks by an omniscient map-maker, and the
world as experienced by a limited navigator who follows the map-makers directions. Having also modeled the
navigator's sensors in a primitive way (a sensor here being more like a feature detector), it is straightforward to
shew that the problem of choosing an effective and efficient subset of sensors for navigation via landmarks is
NP-complete. However, simplifying heuristic evaluation functions do exist, and are being explored for their
effectiveness. The method has also been extended to a grid-like version of two dimensions, with similar results.
It still remains that a “good" set of directions is ill-defined and intractable.

Work on the mobile robot platform of AT&T Bell Laboratories continues; sonar and custom VLSI vertical-
edge detecting vision now cooperate, albeit weakly. The edge-tracking Kalman filter has been further refined, and
initial models of the corridors and their effect on vertical edge positioning is being investigated.

4 Parallel Algorithms

We have analyzed the performance of the parallelization of several computationally optimal algorithms for
depth interpolation; since the probliem is typical of others at the low-level of vision, the optimality results should
easily transfer. We have invented a particularly simple, accurate, and robust shape-from-texture algorithm based
on image autocorrelation that appears to outperform human observation on real scenes of roads, dirt, and grass.
We have designed and implemented a near-optimal programming environment for validating paraliel pyramid-
based SIMD algorithms on the Connection Machine. On our PIPE, we are implementing a system for optic flow
detarmination that fuses the resuits of intensity correlation methods and spatiotemporal energy methods; the
method has already generated a robust grey-level corner detector as an offshoot. The PIPE is fast enough to
provide real-time robot arm control information, which we are preparing to demonstrate by the dynamic grasping
of moving objects.

4.1 SIMD Algorithms

Many constraint propagation problems in early vision, including depth interpolation, can be cast as solving a
large system of linear equations where the resuiting matrix is symmetric, positive definite, and sparse. Analysis
and simulation of several numerical analytic solutions to these equations for a fine grained SIMD machine with
local and global communication networks (e.g., the Connection Machine) shows that two methods are provably
optimal in terms of computational complexity [14, 15, 16]). For a variety of synthetic and real range data, the
adaptive Chebyshev acceleration method executes faster than the conjugate gradient method, if near-optimal
values for the minimum and maximum eigenvalues of the iteration matrix are available.

When these iterative methods are implemented in a pyramidal multigrid (coarse-medium-fine) fashion,
using a fixed muitilevel coordination strategy, the multigrid adaptive Chebyshev acceleration method executed
faster than the multigrid conjugate gradient method again. This appears to be the case because an optimal
Chebyshev acceleration method requires local computations only. These methods have now been validate on
actual range data.

As a possible front-end to such depth interpolation tasks, a new method for determining local surface
orientation was developed from rotationally invariant textures based on the two-dimensional two-point
autocorrelation of an image [12). This method is computationally simple and easily paralielizable, uses
information from all parts of the image, assumes only texture isotropy, and requires neither texels nor edges in the
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texture. Applied to locally planar patches of real textures such as roads, dirt, and grass, the resuits are highly
accurate, even in cases where human perception is so difficult that people must be assisted by the presence of
an artificiaily embedded circular object. However, follow-up extensions attempting to use the method for non-
isotropic textures, even with built-in heuristic biases, were not successful. Nevertheless, the algorithm has
several exploitable mathematical elegancies, and is amenable to parallel implementation.

As part of our efforts under Strategic Computing, three programming environments that support research
on stereo and texture algorithms were developed, in parallel image pyramid style [22]). The current and final
programming environment has been designed, installed, and documented; it is a highly efficient pyramid machine
emulator that executes those image function primitives on the (University of Syracuse) Connection Machine 2. It
cleverly reduces communication contention by an elegant, and probably optimai, embedding of the pyramid within
the hypercube network. Mesh operations take only a small fixed amount of overhead proportional to the size of
the hypercube; parent/chiid operations run in a smaller fixed time independent of hypercube size. This code is
publicly available.

4.2 Pipeline Algorithms

Real-time "pixel-paraliel” versions of a variety of image processing algorithms have now been developed for
our PIPE architecture. Based on our past experience with pipelined processors [33], already installed have been
algorithms for spatial filtering, spatiotemporal filtering, and pyramid-based spatial processing. Most recently, a
novel grey-level template-driven corner detector that combines the advantages of two previously orthogonal
approaches has been designed and validated; it executes in real time [34].

One application of these real-time algorithms is in real-time motion tracking [1, 4]. The motion in a scene is
found by using spatio-temporal filters on a PIPE. The PIPE is able to update motion energy centroids at 10 HZ
and this information is used to update the position of an arm mounted camera which tries to keep the object
centered in the field of view. Latencies in the communication system between arm and camera effectively reduce
the arm movement rate to 4 HZ. The system is being developed in order to pick moving objects in real-time with
our Utah-MIT hand.

Robustness of robotic algorithms is a paramount concern; such reliability can be achieved using an
information-fusion based approach. A prototype system is under development that combines multiple cues for a
visual measurement, along with an associated confidence; the grey-level corner detector is the first example.
Next under investigation is image-flow extraction, using a unified mathematical framework for matching-based
and gradient-based techniques [35, 36, 37]). The two techniques are nicely complementary; intensity correlation
methods work best in structured scenes, and spatiotemporal energy methods are more suited for textured
scenes.

5 Robotics and Tactile Sensing

We have made great progress in integrating a Utah-MIT hand into our robotics testbed. We have
developed a number of low-level sensing and actuation primitives that allow one to easily program the hand for
simple tasks. [n addition, we have been exploring human psychology to understand the ways that humans use
active touch and to apply these strategies to our robotics environment.

5.1 Integrated Environments

The Utah/MIT dextrous hand provides a new set of tools to study intelligent touch and grasping. Cartesian-
based low level control algorithms for the hand, and a more hybrid scheme using both tendon force and tactile
contacts will eventually be pant of a comprehensive grasping environment. It will be capable of performing tasks
such as locating moving objects and picking them up, manipulating man-made objects such as tools, and
recognizing unknown objects through touch. In addition, the integrated programming environment will allow
grasping primitives to be included in an overall robotic control and programming system that includes dextrous
hands, vision sensors, and multiple degree of freedom manipulators (2, 5, 6].

The system has been used to perform a number of grasping tasks, including pick and place operations,
extraction of circuit boards from card cages, pouring of liquids from pitchers, and removing light bulbs from
sockets. These tasks have been programmed using DIAL, a parallel, graphical animation language developed by
Steven Feiner. DIAL permits task-level scripts which can then be bound to particular sensors, actuators, and
methods for accomplishing a generic grasping or manipulation task. We are currently exploring ways to extend
an environment such as DIAL to allow programming of a hand 1o be a first-class primitive in a robotic
programming environment.
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5.2 Multi-fingered Object Recognition

it requires intelligence and mode! building to emulate the human ability to recognize objects haptically: that
is, by only using external tactile sensors, and interal force and position sensors. However, superquadric models
have proven to be surprisingly easy to recover from sparse and noisy sensor data [3, 7). This appears to be
because of their small number of parameters, and consequently their ability o recover the shape descriptions of a
very large class of objects. Generic or prototypical recognition strategies are straightforwardly possible.

In experiments, a database of 6 objects consisting of undeformed superquadrics (a block, a large cylinder,
a small cylinder) and deformed superquadrics (a light bulb, a funnel, a triangular wedge) was each recovered
accurately, with extremely sparse data, typically 30-100 points. This is about 100 times less data than with range
sensing, but it has the advantage of not being restricted to a viewpoint that only exposes half the object’s surfaces
to the sensor. Work is underway to extend this system to include segmented objects, multiple representations of
objects, and the dynamic updating of representations.

Using piezo-resistive tactile sensors mounted on the Utah-MIT hand,, we are currently implementing robotic
analogs of human haptic shape recovery methods such as shape from enclosure, shape from contour and shape
from lateral extent.
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Abstract

The vision group at Rochester is engaged in investigating several aspects of parallel and real-time computer
vision with the overall goal of implementing a set of basic sensory-motor behaviors which could serve as a founda-
tion for more sophisticated abilities, and integrating these primary behaviors into multi-modal systems. The
emphasis is on behaviors which have relevance to, and can be implemented to work robustly in, a broad range of
real-world environments since these are most likely to be useful as fundamental skills.

Our recent work includes commissioning the Rochester Robot, a 3 degree of freedom, two-eyed robot head
mounted on a Puma 761 arm, and connected to a Datacube image processor. Several real-time visual behaviors
have been implemented, including a vestibulo-ocular reflex (VOR), vergence, and target tracking. Research was
also performed in various theoretical aspects of computer vision including parallel evidence combination, parallel
object recognition, principal view analysis, and extended Kalman filtering.

1. Reconstruction and Segmentation in Parallel -- Data Fusion

Integrating disparate sources of information has been recognized as one of the keys to the success of general
purpose vision systems. In the work of P. Chou and C. Brown [Chou87, Chou88a, Chou88b], data fusion is used to
accomplish reliable segmentation and reconstruction in parallel. The computation is formulated as a labeling prob-
lem. Local visual observations for each image entity are reported as label likelihoods. They are combined con-
sistently and coherently in hierarchically structured label trees with a new, computationally simple procedure. The
pooled label likelihoods are fused with the a priori spatial knowledge encoded as Markov Random Fields (MRFs).
The a posteriori distribution of the labelings are thus derived in a Bayesian formalism. A new inference method,
called Highest Confidence First (HCF) estimation, is used to infer a unique labeling from the a posteriori distribu-
tion. HCF has the computational advantages of efficiency and predictable running time. It degrades gracefully,
and follows a least-commitment strategy. ITs results are consistent with observable evidence and a priori
knowledge, and (not least) it out-performs other known methods. The comparative performance of HCF and other
methods has been empirically tested on synthetic and real scenes, using both intensity and sparse depth data for sen-
sor fusion experiments.

2. Principal Views

During 1988, Nancy Waitts pursued research leading to progress in the difficult problem of characterizing the
different views presented to an observer (in either perspective or orthographic projection) by a non- convex
polyhedron. This work was a continuation of her earlier work which produced an algorithm for computing all views
of a convex polyhedron. This research is still in progress, but has resulted in a paper presented at ICPR [Wat188].

The usual approach to this problem is from the point of view of abstract computational geometry, in which
existence proofs and non- constructive techniques based on them abound. Watts’ work is distinguished by her
desire to specify data structures and algorithms that will not only enumerate views but will allow them to be used in
applications. Her earlier work interfaced nicely with a graphics program that produced sample images from any
given view region for convex polyhedra.

To stand a chance of success in the violently combinatorial and geometrically complex situation that arises
with non-convex objects, Waitts restricted her work to a large class of objects that includes many every-day
manufactured objects. She was able to catalog the incidence phenomena that take place in the projective process,
and use this information to design data structures and algorithms for characterizing the aspect graph of objects in
her class. The main computational tool is "plane sweeping”, which is a way to keep track of regions of 3-spacc as
their vertices are encountered by a plane sweeping through space.
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3. Parallel Object Recognition

Paul Cooper worked on the general problem of parallel object recognition. The particular instance chosen for
implementation was the recognition of Tinker Toy objects from images.

One development was a solution to the Tinker Toy matching problem that accommodates the geometric
parameters of the object. That is, an object is recognized not just from its topology, but also from the geometric
characteristics such as the lengths of the pieces and the angles between the pieces at the junction. The key to this
solution was framing the labeling problem so that the geometry of the junctions was implicitly encoded. When
framed in this manner, the labeling problem can be solved by the application of the massively parallel constraint
satisfaction network developed earlier by Swain and Cooper [Swai88]. The application of the network to the
Tinker Toy matching problem with geometry is reported in [Coop88b).

Another development was the use of domain specific information to generate optimized constraint satisfac-
tion nets. Implementing the general form of Swain and Cooper’s [Swai88] network to solve Tinker Toy matching
proved infeasible due to resource requirements. But a way of exploiting the characteristics of the Tinker Toy
matching domain in order to optimize the general network was developed, resulting in a smaller network that could
be (and was) built. Later, a way of specifying domain characteristics for arbitrary domains, was discovered, allow-
ing optimized networks to be built, in an analogous manner, for any domain. This work is described in two papers
by Cooper and Swain [Coop88b, Coop88c].

The final and most important development was a method for matching Tinker Toys that could incorporate
inexact and uncertain information. The crux of this solution was the use of coupled Markov Random Fields to
solve, simultaneously, the segmentation and matching problems in the Tinker Toy domain. The architecture of the
solution is essentially the same as that of previous work (Coop88a, Coop88b], in that the problem is framed as a
labeling problem in the unit/value connectionist design style. However, instead of adopting discrete constraint satis-
faction [Coop88b] or discrete connectionist relaxation [Coop88a) as the formal machinery, Markov Random Fields
(MRFs) are used. With a MRF representation, priors are combined with hypothesis likelihoods to yield a probabil-
ity distribution of solutions with rigorous Bayesian semantics. The result is a scheme that can recognize both
occluded objects, and ones obscured by noisy data.

A final report on the MRF project as well as everything else will be available in the thesis [Coop89].

4. The Rochester Robot and Gaze Control

During the summer of 1988 a team at the University of Rochester commissioned the Rochester robot, consist-
ing of a Unimate PUMA 761 arm and a three-dof, iwo-eyed robot head [Brow88a, Brow88b, Ball88, Olso88]. The
robot is interfaced with a Datacube MaxVideo image processor which allows implementation of real-time visually
controlled behaviors. A number of basic reflexes were implemented for controlling the gaze of the robot, including
adaptive tracking, vergence, and a vestibulo-optic reflex. We believe that an active vision system can use such skills
to advantage as building blocks for behavior. We also maintain that appropriate active control of the visual system
can significantly simplify visual processing in many cases. An example of this is the kinetic depth mechanism dis-
cussed below.

The first gaze control mechanism developed was the vestibulo-ocular reflex or VOR. This is a reflex that sta-
bilizes images on the retina to compensate for head motion. Stabilization aids low-level vision by keeping edges
sharp, and reducing motion blur. We noticed that motion blur could contribute positively to image segmentation if
it could be used to blur objects that were NOT to be attended. Thus it would reduce high-frequency image
phenomena such as edges and textures that are distracting to segmentation algorithms.

Rimey and Brown, on the suggestion of Ballard, implemented the functional equivalent of the VOR using a
builtin facility of the robot command language, and implemented a motion-blur amplifier in MaxVideo. The results
are gratifying -- the moving head causes severe blur of scene components that are not fixated, thus throwing the
fixated objects into strong relief.

A second development was a system due to Tilley and Ballard that successfully tracks moving objects. This
real-time adaptive tracking mechanism effectively implements a "smooth pursuit” system. The basic idea is to
extract an image patch and use it, with some pre-processing, as a real-time correlation template. This worked fairly
well, allowing the robot to ““lock onto’’ a point of interest and maintain a stable gaze while the object or the robot
moved. As in the case of the VOR, such stabilization of the region of interest can both simplify analysis of the
objects at that point, and aid segmentation through motion blurring of irrelevant background details.
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A third reflex was a gross vergence system implemented by Olson. Here, vergence is based on a global
disparity calculated between subsampled left and right images. Thus it reflects large-scale image phenomena, not
high-resolution ones. The work is reported in [Olso88). The basic image-processing mechanism for implementing
the global disparity calculation is the cepstral filter, which is defined as the fourier transform of the logarithm of the
power spectrum. This operation is equivalent to correlating the left and right images, using a nonlinear operation 1o
sharpen the correlation peaks. The computation leads to a measure of global disparity in image x and y, which is
translated into radians of rotation via a small-angle approximation. Applying the compensating rotation verges the
camera.

An example of using gaze control to simplify visual processing is the kinetic depth mechanism [Ball88]. The
object of this work is to produce a depth map in real time using optic flow produced by head motions and
knowledge about those head motions. The idea is simply that the retinal flow of a patch of image of a static 3-D
scene induced by a head motion depends on the depth of the scene producing the image patch and upon the head
motion. It also varies with the fixation of the eyes. If the eyes fixate a patch of scene during head motion (using
either tracking or vestibular feedback for example), optic flow is zero at that point. Thus with fixation kinetic depth
provides depth information relative to the fixation point. A real-time kinetic depth algorithm was successfully
implemented using a simple Hom-Schunck optic flow calculation, and table lookup in our MaxVideo hardware.

Gaze control in biological organisms involves several processes that may interact in non-trivial ways. Brown
has developed a model and a simulator for studying the interaction of five basic gaze control processes: saccadic
motion, smooth pursuit, vergence, vestibulo-ocular reflex, and head motion. This work has allowed us to formulate
and test control strategies for integrating these interrelated behaviors into a unified system.

5. Kalman Filtering and Optimal Estimation Experiments

Recent work by Brown addresses the application of Extended Kalman Filtering (EKF) to basic visual
behaviors, and in particular, to the problem of tracking an object moving in a complex manner. Kalman filtering is a
form of optimal estimation characterized by recursive (i.e. incremental) evaluation, an internal model of the dynam-
ics of the system being estimated, and a dynamic weighting of incoming evidence with ongoing expectation that
produces estimates of the state of the observed system. The primary reference is [Bar88].

The basic Kalman filter is an iterative loop. Its input is the system measurements; its a priori information is
the system dynamics and noise properties of system and measurement; and its useful outputs are the innovation
(the difference between the predicted and observed measurement, by which the filter’s performance may be
quantified), and the estimated system state updated. The (first order) Extended Kalman Filter (EKF) is a version of
the Kalman filter that deals with nonlinear dynamics or nonlinear measurement equations, or both. It linearizes the
problem around the predicted state (a second-order EKF makes a second-order approximation). The basic filter
control loop still applies, but measurements are predicted using a nonlinear measurement equation 4, and in the cal-
culations for filter gain, state update, and covariance update, the Jacobean of 4 is used. Likewise state prediction is
accomplished using the nonlinear state equation f and the state prediction covariance is computed using the
Jacobean of f. These generalizations call for extensions to the EKF data structure in which functions (as opposed to
matrices) are attached to the filter.

Brown has applied the EKF to the problem of tracking a moving target from a moving observer when the tar-
get may maneuver, i.e. depart from the basic, steady-state, "normal” dynamic behavior. A method termed variable
dimensional filtering was used, which essentially substitutes a different, higher order filter when departure from the
modelled trajectory is detected. He also addressed ways of tracking a moving target against a cluttered background,
comparing the performance of track splitting, nearest neighbor standard filter, and probabilistic data association
filter approaches under various conditions. The results of this work are reported in a paper in these procedings.

6. Visual Navigation

In fall 1988 Randal Nelson joined the faculty and the vision group at Rochester having completed his PhD at
the University of Maryland. The dissertation research involved the description and implementation of a set of foun-
dational abilities for visual navigation. In particular, visual methods were described for performing passive naviga-
tion, obstacle avoidance, and homing in general, real-world environments [Nels88d]. This work fits nicely within
the framework of active vision which the group is currently pursuing and, since he intends to continue work along
similar lines, a summary of the dissertation results follows.
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Passive navigation is a process by which a system obtains information about its rotation and translational
motion. This information is useful in navigation to stabilize and direct the motion of the system. Visual methods
attempt to obtain the motion parameters from a time-series of images [Gibs50, Praz80, Horn81, Hild83, Lawt83,
Long84, Koen86]. The problem is hard because solution methods tend to be extremely sensitive to small errors in
the input, while accurate image flow or point correspondence information is difficult to obtain [Tsai81, Adiv85,
Anan85, Nage86, Verr87]. The dissertation shows how accurate motion parameters can be obtained from inaccu-
rate flow data by utilizing image information over the entire visual sphere [Nels88a). Essentially global topological
constraints are used to stabilize the process. It is interesting to note that such spherical images are available to flying
insects such as bees and dragonflies, so there is a biological precedent.

Obstacle avoidance refers to the ability of a system to move about in the environment without striking the
objects in it. This is a fundamental navigational behavior. It is shown that computation of divergence-like proper-
ties of the visual flow field provides qualitative cues which are invariant under rotation of the system and which are
sufficient to permit the system to avoid collisions. The method is applicable in general environments, the only
requirement being the presence of sufficient visual texture to allow the image flow to be roughly approximated.
Empirical measurements show that sufficient texture is present in ordinary objects such as stones, trees, and faces.
The method was implemented and used successfully to control the motion of a camera in various environments.

Homing is the process by which an antonomous system guides itself to a particular location on the basis of
sensory input. This is a slightly more sophisticated, but still fundamental navigational ability. In the dissertation, a
method of visual homing using an associative memory [Hint81, Ackl85, Rume86, Smol86,] based on a simple pat-
tern classifier is described [Nels88c]. Homing is accomplished without the use of an explicit world model by utiliz-
ing direct associations between learned visual patterns and system motor commands. The technique is analyzed in
terms of a pattern space and conditions obtained which allow the system performance to be predicted on the basis of
statistical measurements on the environment. The method was implemented and used to guide a robot-mounted
camera in a three-dimensional environment. This work is described in the paper visual Homing Using an Associa-
tive Memory in these proceedings.
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KNOWLEDGE BASED VISION FOR TERRESTRIAL ROBOTS

Daryl T. Lawton Tod S. Levitt
Advanced Decision Systems Advanced Decision Systems
1500 Plymouth Street £500 Plymouth Street

Mountain View, CA 94043 Mountain View, CA 94043
1. INTRODUCTION

The Knowledge Based Vision Project [Lawton et.al. - 86, Lawton et.al. - 87, Lawton et.al. - &8] is concerned
with developing terrain recognition and modeling capabilities for autonomous land vehicles. One of the basic
functions of the vehicle is to elaborate this terrain map of the environment. Another is to successfully navigate
through the environment using landmarks. For functioning in realistic outdoor environments, we assume
vehicles with laser range finders, controllable cameras. and limited inertial sensing. ‘The range finder is
used for mapping and navigating through the immediate environment. The cameras are used for object
recognition and recognizing distant landmatks beyond the access of the range sensor. We also assume
realistically limited perceptual and object recognition capabilities. In particular, it will see things that it
won't be familiar with and can’t recognize, but which can be described as stable visual perceptions. The
vehicle will not always be able to recognize the same object as being identical from verv different points
of view. It will have limited, inexact, and undetailed a prior terrain information generally in the form of
labeled grid data. Critical questions for this work are how to:

e organize memory about local coordinate systems of landmarks as the primary means of defining loca-
tions

» account for the nature of visual events, and. in particular, use representations that allow for very poor
range and anguiar measurements, while making full use of the extractable strong visual cues (e.g.
ncelusion) as primary data in visual memory representations

e maintain memory structures that associate local landmark systems along paths of motion that the
robot executed when it saw the landmarks

o admit inference processes over visual memory that robustly perform navigation and guidance despite
the poor quality of the quantitative data.

Two particular types of terrain recognition and processing have been explored. The first involves
creation of a predicted scene from a prior terrain information. This is then used to direct grouping pro-
cesses which find predicted structures such as road regions, horizon lines, a terrain patch discontinuities
‘Lawton et.al. - 87]. The second type of processing involves developing an qualitative environmental map
from a freely moving robot without necessarily using any a prior terrain information [Levitt - to appear].
This uses a generic terrestrial scene model which includes several constraints on the formation of percep-
tual groups based upon the relative direction of gravity, the horizon line determined by the orientation to
the immediate ground plane, and the projected egocentric directions from the observer on this plane. The
underlying spatial representation and planning mechanisms, referred to as Qualitative Navigation, telates
locally obtained viewer-centered representations of the environment into a perceptually-based map that can
be used for navigation.
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2. PERCEPTUAL ORGANIZATION

rerceptual organization or grouping concerns how local image structures are combined into globally coherent
ones, generally using criteria such as continuity and completion. Grouping is of critical importance for
knowledge based vision since the predictions generated by object models tend not to appear automatically
in images. Extracted groups can also be used to index into a large database of a prior models. For our
work, grouping has been used to match the predictions from a prior map data, which can be very coarse
and to extract stable perceptual structures which serve as landmarks to incorporate into a map of the world
formed by a freely roaming vehicle. We have developed three difterent types of groupers: the measure based
grouper. the hierarchical grouper, and the Hopfield grouper.

The measure based grouper is a generalization of the edge linker developed by Martelli and others
Martelli - 72.76]. This treats grouping as a search hased relational query over a data-base of spatial objects
such as extracted edges and regions. A group is specified by an initial set of seed vbjects: global constraints
~n shape and object attributes which can be incorporated into the group; local constraints on neighborhoods
which specify successor objects: and an optimization function which is based upon the type of group.

The hierarchical grouper Lawton and McConnell - 87] was developed to address limitations of the mea-
sure based grouper. The first was how to extract groups from an image without initially specifving the type
of group or an explicit optimization criteria. To do this group-type specific rules were developed for extract-
ing an initial set of seed objects. The other was how to group objects which were related but separated by
large distances in an image. To achieve this, the database of extracted immage objects was partitioned into a
pyramid of overlapping areas. Groups are then combined at different levels of the pyramid corresponding to
increasing amounts of spatial separation in an image.

In the Hopfield grouper [Gelband and Lawton - 88| the consistencies and constraints which define per-
ceptual grouping criteria are encoded in the coefficients of an energy functional whose state variables are
the perceptual links between image tokens. These links may be either on or off, that is, existent or nonex-
istent. Minimization of the energy functional results in the formation of perceptual groups of image tokens
which are optimal with respect to the grouping constraints. This work is modeled after Hoptield's neural
network approach (Hopfield - &1, Hopfield and Tank - 85] to solving non-polynomial optimization problems.
A preprocessing stage is used to first extract symbolic tokens from an image or time-sequence of images,
and then to reduce these tokens to primitive tokens. A local or global energy minimization procedure is
then used to form stable perceptual groups, i.e., linked clusters of tokens. A control process freezes stable
croups bv forming permanent links from the variable links: it then allows the minimization grouping process
to continue at a higher level to produce larger coherent structures. This recursive combination of perceptual
groups corresponds to a hierarchy of processing performed by the network.

4. QUALITATIVE NAVIGATION

Qualitative Navigation Levitt - to appear, Kuipers and Levitt - 88, Levitt and Lawton - 89, Levitt et.al.

X7 1s a multi-level theory of spatial representation of the environment based upon the observation and
re-acquisition of distinctive visual events, i.e., landmarks. The representation provides the theoretical foun-
lations for a visual memorv database that includes coordinate free, topological representation of relative
spatial location. yet smoothly integrates available metric knowledge of relative or absolute angles and dis-
tances. We have developed qualitative path planring and execution algorithms that are tobust in the face




of verv coarse or absent measurements of range to, and angle between, landmarks. Rules and algorithms
are presented that, under the assumption of correct association of landmarks on re-acquisition {although not
assuming landmarks are necessarily re-acquired) provide a robot with navigation and guidance capability.
The ability to deduce or update a map of the environment, a posterioni, is a by-product of the inference
process. In order to demonstrate our claims, we have built a qualitative navigation simulator, QUALNAV,
that provides a software laboratory for experimenting with spatial relationships in visual memory, simulated
visual acquisition of landmarks, and their relationship to path planning and execution.

A kev contribution of this work is the realization of true local coordinate systems, and a theory that
makes them computationally useful to a mobile robot. Using local coordinate systems, which we call
viewframes, a robot can navigate about its environment, determining its relative location in the world
with essentially a constant error. In particular, there is no multiplicative accumulation of error in location
that is the shortfall of all schemes that depend upon a global coordinate system for location.

To accomplish this, the notion of a geographic “place” is defined in terms of data about visible land-
marks. A place, as a point on the surface of the ground, is defined by the landmarks and spatial relationships
between landmarks that can be observed from a fixed location. More generally we can define a place as a
region in space, in which a fixed set of landmarks can be observed from anywhere in the region, and rela-
tionships between them do not change in some appropriate qualitative sense. Data about places is stored in
structures catled viewframes, boundaries and orientation regions.

Viewframes provide a definition of place in terms of relative angles and angular error between Jandmarks,
and very coarse estimates of the absolute range of the landmarks from our point of observation. Boundaries
and orientation regions provide a more qualitative definition of place. Both concepts allow us to localize
ourselves in space relative to a set of observed landmarks, without necessarily using a priori map data.

Viewframes allow us to localize our position in space relative to observable local landmark coordinate
svstems. In performing a viewframe localization, we can make use of observed or inferred data about our
approximate range to landmarks. Errors in ranging and relative angular separation between landmarks are
smoothlv accounted for. A priori map data can also be incorporated.

If we drop all range information, we can still use the notion of boundaries to determine our qualitative
pusition relative to other landmarks. A pair of landmarks creates a virtual division of the ground surface
by the line connecting the two landmarks. The observable relative orientation of the landmarks. i.e | the
left-to-right order of the pair of landmarks, indicates which side of the landmark-pair-boundary (LPB) we
are on. A set of LPBs with orientations determines a region on the ground called an orientation region.
[.LPBs can be derived by considering paits of Jandmarks from viewframes; in this case we speak of the set of
orientation regions induced by or associated to the viewframe.

Viewframes are extracted by an ongoing, multi-stage process. A panoramic set of images 1s obtained
since the localization is aided by multiple landmarks distributed in multiple directions relative to the tobot.
The hierarchical grouper is used to find a set of restricted perceptual groups including long lines aligned
with gravity, junctions. repeated patterns of parallel lines. These correspond to potential landmarks. We
assume that the robot translates from viewframe to viewframe with significant changes in robot direction
being a usefnl criteria for extracting a new viewframe. The translational motion assumption isn’t necessary
but it does simplify matching. The extracted groups are then tracked along the determined transiational
flowlines. The number of frames over which a landmark is tracked is associated with a landinark to establish
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it’s reliability and strength. The disappearance of landmarks due to occlusion is used to establish when a
new viewtrame should be extracted.

5. IMAGE UNDERSTANDING ENVIRONMENTS

We have done research in developing software environments for image understanding research and applica-
tions [Lawton and McConnell - 88}. This work was initially motivated by supporting internal developments
and for expediting technical transfer as a part of the autonomous land vehicle effort. In the last year it has
hecome an area of research and development in it's own right of significance to DARPA. IU environments
~upport shared development across multiple researchers and projects. They make possible the rapid pro-
totyping of applications. The programming constructs used in such environments may help in developing
constructs for machine independent development. The also may supply a common set of tools and standards
across the [U community,

We initiallv developed the PowerVision environment McConnell et.al. - 28] on the SYMBOLICS LISP
machines using FLAVORS. It was characterized by a small number of modular components and programming
constructs buile around objects commonly used in image understanding such as images, curves, regions.
junctions. and groups. It consisted of a macro language called DEFIU for writing code and manipulating
defined objects in terins of local neighborhood-level operations. It utilized various types of system databases
a database query language. a display language, displav windows, and several types of browsers to interact with
objects. These components were highly independent and could be combined in creative ways by programmers.

View [Edelson et.al. - 881 and Shark Dye et.al. - 88] were developed to produce a machine independent
image understanding environment. This was motivated in part by the transfer of work from LISP-based
processors such as SYMBOLICS to less expensive and more general computer workstations such as SUNS.
SHARK is a commonlisp; CLOS based {Bobrow et.al. - 871 toolkit for building user interfaces. It is currently
built on top of SUN/NEWS but will be ported to X-windows. Shark supports general display objects such
as image-display windows, browsers, menus, tables, and graphs. VIEW is a CLOS based set of image
nnderstanding constructs which are machine independent. VIEW defines a general inheritance hierarchy
f image understanding objects which consist. at the highest level, of two general tvpes of objects: spatial
objects and database objects. It is possible to associate methods with these gencral objects and have
method inheritance and combination occur for specialized instances. Thus, convolution, when defined for
ceneral spatial objects specializes to deal with arbitrarily shaped. registered, multi-dimensional objects. The
nniformity provided by CLOS allows for access to other CLOS tools developed at ADS for Bavesian inference
nets and geometric modeling.

A recent effort is porting the CommonLisp Based 1 environment onto the Apple MAC 11 series of
personal computer workstations. This is motivated by several factors. The MAC Il is an open architecture
which is extendable by inexpensive co-processors and, increasingly, low cost video cameras, digitizers and
processing boards as desktop viden and image processing becomes a commercial reality. The MAC II has an
extensive, reliable, and highly optimized nser interface with an enormous number of commercially developed
woftwate products. We have found that the MAC 1T was superior in terms of constructing an interactive
nser interface, for linking video co-processors and memory devices into a coordinated environment. Major
Aitliculties were found to arise from the lack of an operating system supporting virtual memorv, multi-tasking,
and interprocess communication. Image based computations in the current version of Coral CommonLisp
were also much too slow to support a researcher working on problems of any realistic scale. Nonetlieless,
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these factors are mostly premature and not intrinsic to the MAC: MACH and AU:X are now supported
and Apple has bought Coral CommeonLisp. lmportant lessons from our work in IU Environments is the
importance of machine independence in developing an environment. It is also important to utilize, when
ever possible, commercially (or community) supported interfaces and programming environment tools.
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KNOWLEDGE-BASED VISION TECHNOLOGY

OVERVIEW FOR OBSTACLE DETECTION AND AVOIDANCEf%

K.E. Olin, M.J. Daily, J.G. Harris, F.M. Vilnrotter
Hughes Research Laboratories, Artificial Intelligence Center
3011 Malibu Canyon Rd., Malibu, CA 90265

Introduction. This overview summarizes the progress of vision research at the Hughes Artificial Intelligence
Center in the area of autonomous navigation of outdoor robots.

A set of experiments designed to determine the feasibility of autonomous cross-country terrain navigation were
successfully executed by Hughes with the DARPA/Martin Marietta Autonomous Land Vehicle (ALV) at the Denver test site
{Daily et al., 1987]. The highlights of two separate sets of experiments are shown in Figure 1. Significant technological
developments and system contributions were demonstrated by these experiments: the hierarchical perception system allowing
multiple levels of interaction with a planning system, the concepts of virtual sensors and behaviors for local vehicle control,
a formal definition for obstacles using a three dimensional Cartesian Elevation Map and a vehicle model, and multiple
algorithms for obstacle detection including the vehicle trajectory algorithm, The experiments demonstrated the feasibility of
an experimental system operating with conventional computing hardware distributed both on and off-board the vehicle. Such
a configuration reduces the amount of preparation otherwise required by specialized hardware and software facilities.

The experiments also validated our approach of using simulation in our lab to close the loop between sensing, acting
and planning. Our simulation capabilities include terrain modeling, synthetic laser ranging from any position and
orientation, vehicle control simulation, and the ability to mimic the software and hardware configuration (including the
communication network) on-board the ALV. The purpose of the simulation is fourfold. First, it allows us to test the
efficiency, correctness, and usefulness of the current methods. Second, it provides a realistic environment for development of
new capabilities. Third, it exercises the potential interfaces and timing requirements between planning, perception, and
vehicle control, such that problems are identified prior to actual vehicle experiments. Finally, it provides a demonstration of
working concepts and systems. Our successful experiments and efficient vehicle schedules have proven the value of
simulation. The perception software was ported from the lab to the vehicle experiments with no modifications. We
continue to evaluate our system using simulation.

The cross country experiments provided us with valuable hands-on experience and exposure to the problems associated
with outdoor robots. As a result, we have directed our research toward object recognition and information fusion. We have
developed a method for segmentation of color imagery that simultaneously smooths and finds color discontinuities based on
Markov random fields. We have experimented with techniques that fuse sequential frames of laser range data to recover all
six degrees of freedom in vehicle motion. In order to analyze a complete experiment, we have developed a representation
system for combining sequences of sensed data together with prestored data such as map data. This representation supports
temporal integration for improved local obstacle analysis as well as information for complete mission analysis.

+ Development of this system has been supported by Defense Advanced Research Projects Agency (DARPA) contract #DACA76-85-0007.
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Experiment Period 2 Weeks 1 Week
Maximum Distance 200 Meters 735 Meters
Fastest Speed 1km/MHr 3.5 KmMHr
: Cem & Vehicle Model
Perception Technology On-board ALV (Sun 3) Same
. Maps & Behaviors Sub-goal Ellipses
Planning Technology ALV Lab (Symbolics) Improved Displays in Lab
Communication Rf Link Rf Link
. Sys. Loosely Coupled Terrain Vs
System Limitations Vehicle Interfaces Sensor Resolution
First Cross Country Demonstration Reliability and Repeatability
Major Accomplishments Map & Sensor Based Navigation Validation of virtual sensors & behaviors
Verification of Simulation Longer runs (30+ minutes)

Figure 1. Results of Hughes Cross Country Experiment On-board the ALV

1. Technical Overview

1.1. Problem

Operating in an unconstrained natural environment poses many problems for the perception and planning components of an
autonomous system. The complexity of the environment makes it impossible to predict every relevant situation, such that
the system must reason with the knowledge available and navigate accordingly. Itis crucial that perception recognize critical
features in a timely fashion since the value of these observations rapidly decays and new features arc constantly being
exposed with the vehicle motion. The vehicle planning system must make maximal use of all accessible knowledge, such
as map data and expected landmarks, to help direct perceptual tasks. Thereby, specialized tasks determined by planning can
impose additional constraints which make the recognition of critical features in the environment more likely, This idea of
using a planning system to unify sensing and control goals is inherent in the Hughes system architecture.

Previous demonstrations on the ALV were restricted to road following problems. Navigation in an unstructured
environment such as cross-country terrain presents a significantly different set of problems. In road-following applications,
knowledge and expectations of the traversable surface simplifies the otherwise difficult task of processing video data to detect
roads. Certain assumptions conceming surface smoothness and continuity and fairly well constrained surface properties such
as width, color, and slope are exploited. Natural terrain scenes, on the other hand, are less “predictable” than man-made
scenes. Seasonal changes, weather conditions, or erosion result in a constantly changing environment. The features which
might be used to compose precise models of terrain objects are difficult to capture and represent in current computer vision
systems. We exploited the advantages gained through the use of a range-finding sensor.

Obstacles may be defined in the most simple case for road following as any perturbation of the road surface. Planning
in road following scenarios is then responsible for maintaining a course “on” the road allowing very little variation. By
comparison, in cross-country navigation there is no pre-defined course for traversal; a planning system must both plan a
potential course and monitor local progress along that course as execution requires frequent avoidance of obstacles. The
sensed information therefore is interpreted to locate a much richer variety of objects that help in identifying obstacles and
areas safe for navigation.

Obstacles in cross-country terrain are varied and plentiful. Many ad hoc definitions for obstacles have been suggesied;
for these definitions, nature” has provided many examples and counter-examples. A more formal definition is required.
Hughes has advocated defining obstacles in terms of the vehicle itself; that is, a vehicle model that represents the
traversability constraints. Our current vehicle model defines obstacles in terms of suspension, clearance, and vechicle
tilt/pitch.
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1.2. Summary of Approach

A knowledge-based system which can effectively accumulate, represent, and disseminate diverse knowledge is being
developed. The perception system must actively select and integrate sensory information. The wide variety of capabilities
and applications is focused through requests for information issued by planning. Although planning requests serve as an
attention-focusing mechanism, perception must be capable of satisfying multiple requests simultaneously. Since planning
requests may demand different forms of data with different requirements for assimilation or immediacy of that data, perception
must be capable of fusing data from multiple sensors and multiple “looks” as well as providing specialized processing for
real-time control tasks.

For autonomous navigation, perception must use sensed data to determine local areas of obstacles and free space. In
our approach, obstacles were formally defined as areas violating the vehicle suspension, clearance or slope tolerances, and
areas where there is not enough sensed information to determine a safe path (“unknown” areas). Perception verified the safe
distance along the set of potential vehicle paths requested by the planner; each path termination would be labeled as one of
these obstacles. Perception could also provide a coarse measure of “quality” for each path, such as the average slope or
variation in elevation along a path. QOur approach to perception has been closely integrated with the vehicle planning
technology being developed at Hughes (Keirsey et al., 1988]. The planner can use the information provided by perception to
avoid paths terminating with known obstacles and to explore along paths with unknown areas.

Object recognition is achieved by enriching the geometric descriptions for obstacles obtained from laser range data
with color data and map expectations. The objective is to distinguish obstacle from non-obstacle. For example, a common
problem at the Denver test site involves the recognition of tall thistles, which the vehicle may safely traverse, as
distinguished from a thin metal post of similar diameter and height, which is an obstacle. Route determination is also
affected by identification of dominant terrain features. Another example from the Denver test site is the recognition of an
obstacle as a gully that can then be located in the digital terrain map and more efficiently avoided or traversed.

2. Color Image Analysis

In order to effectively locate obstacles such as rocks and bushes, we have investigated the use of color imagery
vbtained via a RGB color video camera. Our work has focused on two main areas: analysis of color space and
representations, and color image segmentation and labelling.

We have developed a method of simultaneously smoothing and finding color discontinuities. For our purposes in
dealing with natural outdoor imagery we have investigated methods of calculating color differences and the corresponding
strengths of this difference required for the formation of color discontinuities. Our current segmentation exploits the expected
dependencies of neighboring pixels inherent in Markov random fields (MRF). Briefly, within the MRF framework, we
defined two processes: 1) the line process, which governs the formation of discontinuities (consisting of horizontal and
vertical components), and 2) the color process, which performs smoothing where discontinuities do not exist. By allowing
the binary line processes to vary continuously between 0 and 1, the final « :<continuities are formed in an iterative fashion.
The energy function minimized using Hopfield nets has four contributing terms: a smoothing term, a data term, a potential
energy term for the line processes, and a gain term. Our research has included studies of the influence and interaction of these
parameters. A full description of this work, including color images showing results, is found in [Daily, 1989] in these
proceedings.

3. Information Fusion

During the past year our research on recognition of natural terrain objects has emphasized fusing information. Such
information may be collected or computed from multiple sensors, available as a sequence of image frames collected over
time, or may be obtained from non-image sources such as digital maps, In this overview, we will describe our techniques
for fusing multiple frames of data obtained from laser range scans, and the development of the Automated Topographic
Terrain Information Collector (ATTIC). Computed Cartesian color maps with rectified color data and navigational
preferences in the form of traversability weights will also be introduced.
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3.1. Multiple Frame Fusion Techniques

Since the vertical field of view of the laser range scanner is 30 degrees, the terrain immediately in front of the sensor
is not be visible. For example, the ALV scanner cannot see obstacles directly in front of the vehicle due to the height and tilt
of the laser range scanner. The closest scanned ground is approximately 13 feet in front of the vehicle. One may choose to
ignore that lack of data and assume an obstacle-free flat plane immediately in front of the vehicle. Another way to fill in the
unknown area is to replicate the nearest scanned ground forward until it is underneath the vehicle. This method may project
an obstacle up to the vehicle bumper that is actually 13 feet away and therefore block a viable avoidance route. These are
naive impractical solutions, especially for cross country applications. The best approach is to fill in the unknown area using
data from previous scans.

Fusion of laser range information requires exact knowledge of the vehicle displacement between successive images
with vehicle motion having six degrees of freedom. Orientation sensors on board the ALV record the vehicle's heading, and
the x and y displacement values. Hughes introduced an additional sensor to estimate vehicle pitch and roll. However, there is
no means to measure the change in elevation between image samples. In natural terrain, elevation values may vary
drastically between image samples; for instance, the experiments show elevation changes of two to three feet with an average
sampling rate of eight seconds. A simple estimate of the change in vehicle elevation, z, between two scanning locations
may be calculated by taking the difference of the average z value of a small patch of common ground. However, this method
is severely limited by the accuracy of the local navigation system (LNS). Consequently, we have developed two more
sophisticated methods for motion recovery which do not rely on accurate LNS information and can recover from an image
sequence all six degrees of freedom in vehicle motion. The first algorithm, rigid body motion recovery, obtains all six
degrees of freedom of motion assuming a static environment. The second algorithm, range flow, computes a dense 3D
vector motion field. Our motion analysis algorithms have been done in collaboration with Berthold Horn from the MIT
Artificial Intelligence Lab.

All of our range motion analysis is performed with Cartesian Elevation Maps (CEMs). The CEMs are the same three
dimensional terrain representation used for single frame obstacle detection. We provide a brief description of the CEM for
the reader's convenience.

3.1.1. Cartesian Elevation Map Construction

The Cartesian Elevation Map (CEM) is an alternate representation for range information in which data from the
viewer centered coordinate system of a range sensor is transformed into a Cartesian, z(x,y), coordinate system [Daily, Harris,
Reiser, 1988]. This results in a down-looking, map view representation of terrain. The first step in converting from the
corrected, pre-processed laser range data to the CEM is to calculate the (x, y, z) Cartesian values from each range
measurement. Optics in the sensor cause scan rays to diverge as they travel away from the sensor. When a divergent ray
falls on an object at some arbitrary angle, it illuminates an elliptically shaped area often referred to as a laser "footprint”.
Distance to the footprint is a reflectance weighted average over the illuminated area. Each of the 3D points in the CEM
denotes the approximate location of the center of a footprint.

Figure 3a shows the actual (x,y ) positions of each one of the scanned points for the image in Figure 2 within a 64
foot by 80 foot region in front of the scanner. Elevation data (z values) are present only at these sparse points; we define
these points as constraint points in later interpolation process. As one would expect, the sparsity of scanned points increases
with distance from the scanner. We approximate the complex laser footprint scanning procedure as a smoothing followed by
a sampling process. Theoretically, if the terrain were sampled well enough (i.e. within the Nyquist rate), then we could
accurately reconstruct the original terrain by interpolating a smooth surface btween scanned points. Clearly, there will
always be some unknown regions in which there are not enough scanned points to accurately reconstruct a surface. For
cxample, any region outside the field of view of the scanner or in the shadows of tall features in the terrain will be unknown.
These areas must be located and excluded from the interpolation process. Figure 3b shows the regions where the density of
scanned points was deemed too low to accurately reconstruct a surface.

An iterative interpolation algorithm was used to fill in a continuous surface in all regions with a sufficiently dense
sampling of points. This algorithm is similar to the standard routines used for interpolating surfaces from sparse stereo
data. Rather than fitting a thin plate to the surface (i.e. minimizing the quadratic variation), we have found that fitting an
clastic membrane is satisfactory. Intuitively, this algorithm is equivalent to fitting a rubber sheet over the set of constraint
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points and finding the resultant minimal energy surface. Figure 3c depicts the final interpolated CEM, where brighter areas
denote higher elevations.

Figure 2. Laser range image. Figure 3. Cartesian Elevation Map;
a) Constraint points, b) Known areas,
¢) Interpolated elevation data.

In cross-country navigation, nearly all useful information in a laser range image is contained within the first 64 feet of
the scanner's field of view. With a zero offset setting on the range scanner, this represents the first ambiguity level. While
we developed algorithms to process information in the subsequent ambiguity intervals, the generally poor quality of the data
beyond the first interval does not warrant the investment in processing time. Our current methods do not use any data in the
remainder of a column after an ambiguity jump. Though this approach works well in many scenes, it will fail in those
containing overhanging objects. This is a serious problem since the current technique will entirely ignore obstacles such as
tree branches, allowing the vehicle to collide with them. The CEM also poorly represents features on near vertical surfaces.
If objects such as these ever dominate an environment, it will be wiser to compute motion from the original range images.

The following section discusses how the CEM concept is used to fuse data from multiple scans. The algorithms we
use for motion analysis process the CEM without regard to the original range sensor, such that a stereo depth map could also
be used. The CEM has also been used to aid in the combination of data from more than one sensor.

3.1.2. Rigid Body Motion Recovery

The rigid body motion recovery algorithm obtains all six degrees of freedom for a moving vehicle platform from
sequential pairs of CEMs. The original range images cannot be approximately registered since they are scanned from a
viewer centered coordinate system. CEMs, on the other hand, can be translated and rotated by properly moving constraint
points and re-interpolating the CEM. We have also found that motion analysis is mathematically much simpler when
dealing with CEMs than with the original range images. Making the restrictive assumption of a static environment allows
us to replace a severely underconstrained system with an overconstrained system which has one equation at each pixel and
only six unknowns in the whole system [Horn, Harris, 1989].

The method assumes that the motion between scans is small compared with the feature size of objects in the
environment. For example, if two CEMs are misaligned by just a few feet, narrow obstacles such as gullies may not
overlap in the two CEMs, resulting in inaccurate motion recovery. However, in our experiments and data collection, the
sampling rate between CEM's was typically eight seconds or more. When vehicle motion between successive frames is
large (e.g. 10 feet), two possible approaches are: 1) to use motion estimates obtained from on-board sensors to
approximately align CEMs, and 2) to use a coarse to fine approach. For the first method, on-board sensors give reasonable
estimates for x, y, and heading. Using this information, the rigid body motion recovery algorithm computes all six
parameters between two successive frames fairly accurately. We have found, however, that the roll of the vehicle can vary
dramatically in natural terrain so that there is an unacceptable accumulation of error acquired from the fusion of many frames
(over 100 frame sequences). In the latter method, on a coarser level of resolution, the CEMs will be heavily smoothed so
that only large features such as the rock outcrops and the gradual curvature of the ground remain. The motion computation
at this scale will be very robust to misalignments (because of the large feature sizes) but the precision of the computation
will be low (again because of the large feature sizes). The coarse scale computation of motion should be a good enough
estimate for the next finer level of resolution to compute a more accurate motion, and so on until the desired resolution is
achieved.
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Figure 4 shows a sequence of range images, corresponding CEMs and the resulting fused CEM. The rigid body
motion recovery algorithm works accurately. Given only estimates of three of the six degrees of freedom (x, y and heading),
the algorithm computes all six parameters. We are working on methods of quantifying how well the algorithm works, but
CEMs can now be fused adequately enough to reliably operate the ALV. In fact, in one of the scans, Joe Human walked
through the image and appeared in one of the CEMs. Joe's appearance seemed to have no effect on the fusing process, since

the method robustly averages constraints from the total area of the CEM. We have not yet experimented with coarse to fine
fusion techniques.

Figure 4. Rigid Body Motion Recovery
Left) Sequence of laser range images, Bottom) Corresponding CEM sequence, Center) Fused CEM

3.1.3. Range Flow

Range flow can be understood as a three dimensional extension of traditional two dimensional optical flow. In optical
flow, two dimensional motion in the image plane is computed by assuming that the brightness of objects is independent of
small changes in viewer rotation and translation. In range flow, we know exactly how the range of objects changes with
viewer motion. We use the same motion constraint equation from rigid body motion recovery. Note that in contrast with
2D optical flow, no comparable assumptions about the change of z over time need be made. We still have an ill-posed
problem since we have 3 unknowns (x, y, and z) at each pixel and only one constraint equation. Just as in optical flow, we
assurme that the motion fields are smooth to regularize the problem. Minimizing the resultant energy formulation yields an
iterative technique for computing the dense velocity fields. Discontinuities in the velocity fields and fusion with video data
should be natural extensions with use of the powerful MRF ideas developed by Poggio and his colleagues at MIT.
Preliminary results for the range flow algorithm have been obtained. We plan to investigate the range flow algorithm more
fully when we need to deal with dynamic environments and multiple sensor fusion. We do not need its power for the
autonuinous navigation scenarios we are ptanmng in the shoit tern,

3.2. Automatic Topographic Terrain Information Collector

Many types of autonomous vehicle missions will require a collection of data along the perceived route. In particular,
it will be important to keep road, obstacle, and perhaps landmark information available for map verification or for planning a
return trip. Since it may not be feasible to keep a full resolution fused CEM for the entire route lower resolution versions
may be sufficient along with symbolic information gathered about specific scene objects. The scene objects of interest may
be compact, e.g., rocks and trees, or extended, e.g., ravines and steeply sloping terrain. We therefore need a complex
knowledge representation system that is able to integrate information perceived over time and accommodate different kinds of
information, including scalar arrays and symbolic information, stored at a number of different resolutions.

The Automated Topographic Terrain Information Collector (ATTIC) is a multi-resolution knowledge representation
system designed to organize information from different sources collected or computed over time. It can also be used to
integrate new information with previously stored information (e.g. maps) 1o achieve information fusion for perceptual
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understanding. The ATTIC allows the user to select the number of resolutions or levels, the resolution of each level, and the
row (column) dimension in meters for the arrays at each level. A single level within the ATTIC includes local terrain
information and obstacle arrays as well as world location and display information. As information is collected, the ATTIC
multi-resolution arrays are updated using a modular floating origin scheme to optimize the display of large amounts of data
with efficient memory allocation.

3.2.1. Objectives

For autonomous vehicle navigation in complex terrain it is important to have a reliable means of interpreting the
environment. Wherever possible, multiple information sources should be used to reinforce correct interpretations, evaluate
possible anomalies and add to the richness of the scene object descriptions. Our goal in developing the ATTIC is to include
many types of information to support all levels of information fusion. Scene objects extracted from perceived data have
more complete descriptions as more types of symbolic and/or cultural information are made available. We have evaluated the
ATTIC using the CEM data obtained during our 1987 ALV experiments, together with map-based cultural and elevation
information available for the same area. Test data have included sequences of over 300 laser range scans containing complex
vehicle paths that cross over the same area from multiple directions.

3.2.2. Current Functionality

The ATTIC system was designed to: 1) organize information from different sources collected or computed over time,
and 2) integrate newly sensed information with previously stored information such as maps. The sensed information
includes CEM sequences, with each CEM calculated from the laser range data and fused with previous data using the rigid
body motion recovery algorithm. The system has multiple resolution levels defined by the user. Fused elevation data from
CEMs is shown at two resolution levels in Figure 5.

Figure 5. Two levels of elevation data in the ATTIC;
a) Entire experiment at low resolution, b) Path cross over area at high resolution.

Other information computed as an aid in mission analysis includes a history list and a frame count array. The history
list contains information about the respective CEM frames composing the current ATTIC application. The parameters in
the history list consist of the CEM frame sequence number and corresponding time stamp, distance traveled since the last
CEM, vehicle heading in world coordinates, current world location, current vehicle velocity, and change in elevation (delta z)
when one is calculated in the ATTIC. The frame count array resides at the coarsest resolution level of the ATTIC and retains
the number of the most current CEM frame adding information to that pixel's area. The frame count array also doubles as a
"maybe known" array, i.e., an array in which a pixel is greater than zero if at least part of that pixel's area is known, The
value of a pixel in this array can be used to index into the CEM history list. In the event that an important image feature is
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extracted, this index provides valuable time tags over the feature's area.

An important feature of the ATTIC is the ability to relate sensed information to a prestored digital map. Map data and
map manipulation procedures are used to provide information concerning elevation and landcover as weli as landform and
gully locations. We have used corresponding map data for a 320 by 320 meter area representing the ALV experimentation
area. Some of the cultural maps for this area are illustrated in Figure 6. In addition, a map route array was defined to display
the predicted elevation values expected to overlap with the sensed data. Figure 7 shows map elevation data for the sensed
elevation data in Figure 5. Therefore, as the CEMs are calculated, fused and added to the ATTIC sensed elevation arrays, 2
corresponding array of map information is available. Comparison of these arrays enables us to measure the relative
correctness of the calculated vehicle location and elevation values. Discrepancies have been experienced in cases with either
an incorrect estimate of initial vehicle roll or roll estimates were not available (or poorly measured) for each range image.

Figure 7. Predicted elevation data for vehicle path. Figure 8. Map data overlaid with sensed terrain data.
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We have also experimented with the use of the cultural terrain information for obstacle identification. In Figure 8,
cultural features are mapped onto the sensed elevation data in Figure 5. The gullies along the lower diagonal of the image
align well with the lower boundary of the vehicle path. However, in the upper portion of the path loop, it appears that the
vehicle traveled through gullies. Two explanations are possible for this condition. First, map information does not include
the depth of a gully, such that a shallow gully is safely traversed. Secondly, there may be errors in the map data. In this
example, the gullies are displaced in the map; they are physically located just above the path and were successfully avoided
by the vehicle in this experiment.

In order to accommodate obstacles, the slope image and obstacle mask resulting from the Gradient of Gaussian
(GOG) computation [Daily, Harris, Reiser, 1988] were added to each ATTIC level. The GOG obstacle detection method was
developed to calculate an approximate tertiary map of obstacles, unknown areas, and free space. Just as in conventional edge
detection in video images, the CEM is convolved with an appropriately sized Gaussian mask and then the magnitude of the
gradient is thresholded. The threshold value chosen corresponds to the maximum slope that the vehicle model can traverse
(i.e., approximately 18°). In Figure 9 we show the GOG mask for obstacles in both low and high resolution levels of the
ATTIC. The gully area shown at the bottom of the route is clearly distinguished as an obstacle (bright intensity) in the
GOG image.

Figure 9. Obstacle detection using gradient of Gaussian algorithm.

Other information we have found useful for obstacle detection includes the number of times a pixel has been scanned
("known" pixel) and the number of times an obstacle has been detected. This information allows us to filter out obstacles
detected due to spurious returns from the laser range scanner (real range data tends to be noisy). For the vehicle speeds and
sampling rates for the ALV experiments, typical obstacles are seen at least three times. This type of obstacle filtering
scheme tends to lose obstacles at the edges of the path since these pixels appear in fewer scans. An adequate threshold for
this information should be experimentally determined.

3.2.3. Additional Maps to Augment ATTIC

It is intended that other information will be added to the ATTIC. Two fused maps that we have available are the
Cartesian Weight Map (CWM) and the Cartesian Color Map (CCM). Like all of our Cartesian maps, these are downward
looking maps of the local vehicle area.

The CWM was developed to provide an improved understanding of the vehicle's local environment. Each location in
the CWM contains one or more weights signifying the cost of traversing through that area. Weights may be combined from
diverse and independent sources such as color sensors or range scanners, virtual sensors, or processing techniques like the
gradient of Gaussian (GOG) slope algorithm. The weights need not be fixed, but may be a function of terrain type, vehicle
speed, and mission objectives. In this way, the CWM adds structure to potentially conflicting and diverse information about
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traversability. It also provides a natural way to feed a much richer global description to the local planning unit. For
instance, areas in the CWM that are bumpy are penalized while smooth regions are rewarded. The CWM has been exercised
with a least cost path planning algorithm in our simulation environment. It has successfully kept the vehicle safely away
from obstacles, navigated a narrow corridor between two obstacles, and avoided cul de sacs which are within the field of view.

The CCM is another downward looking map, but in this case we store color information obtained from the color
sensor at each map location. This results in a true rectified view of the color image without using flat ground assumptions.
In our approach, the elevation map (CEM) is back projected to find the color of each pixel. In this way, no interpolation of
color is necessary and as many features as possible from the video image are present in the CCM. We plan to use the CCM
in conjunction with the CWM 1o locate obstacles that are difficult to find using only geometric information in the CEM.

4. Conclusions

Advances over the past four years in the vision and planning technologies for mobile robots have culminated in an
exciting series of demonstrations. On-road and off-road experiments with both the ALV and Navlab testbeds have shown the
feasibility of the current technology and systems to navigate in real world outdoor environments. The next step, the ability
of a system to understand the sensed scene and to plan the vehicle actions needed to accomplish scenario goals, is beginning
to reach the maturity level necessary to spawn a new series of experiments,

We are proud of our accomplishments in cross-country autonomous navigation and will continue to study issues
related to mobile robots. Finally, we regret that the ALV will no longer be as a testbed for autonomous vehicle technology.
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Image Understanding Research at GE!

N.R. Corby

GE Corporate Research and Development Center
Schenectady, NY 12301

INTRODUCTION

The basic paradigm of model-driven image understanding continues to be an effective one for a large
number of problems encountered in machine vision. Many of our concerns in modelling have arisen from
considerations of basic questions in model-driven object recognition. We have taken the view that formal
geometric reasoning techniques may provide a way to address the goals of developing new, more powerful rep-
resentations on which to base recognition-oriented models and new approaches to performing the recognition
task.

We have attempted to progress along a dual course which seeks to demonstrate the applicability of our
techniques to concrete problems such as the automated interpretation of military reconnaissance imagery,
while maintaining a predominantly research-oriented focus. This dual course has not proved a hinderance
and, in fact, has been beneficial in identifying specific and general problems in automated recognition.
Application issues such as computational complexity and speed issues led to the vertex-pair approach as
a compact feature for recognition, while the need to address the total problem of reconnaissance imagery
understanding has led us towards the PACE research system described last year [Corby et al]. The results of
application experiments have strongly influenced our work in more formal geometric reasoning methods. For
example, the goal of automated modelling based on a combination of numerical data and algebraic constraint
sets s a direct consequence of application issues, as is our research in symbolic solution methods.

This report will briefly summarize the major elements of our work. A more complete discussion can be
gained by reference to the appropriate paper in this and other volumes.

MODEL-BASED OBJECT RECOGNITION

Our approach has focussed on the identification of 3-D and corresponding 2-D geometric features sufficient
to recover object position and orientation under the conditions of affine projection. The object models that
we use are solid polyhedral models. The 3-D/2-D feature that we have developed is the "vertex-pair”
[Thompson and Mundy 88]. We use a transform space " voting” proceedure to exhaustively compare all 2-D
features to a specific 3-D feature, casting a set of votes for each comparison. Sucessive consideration of a
small number of 3-D vertex-pairs results in clusters in transform space, since all 3-D features are taken from
a rigid-body solid model. Recognition is acheived by detecting clusters in transform space and verifying the
appropriateness of detected clusters (hypothesis verification). The transform space approach has allowed us
to progress in spite of the sometimes erratic and fragmented performance of current segmentation algorithms.

Two major areas of interest during the past year have been automated methods to select 3-D matching
features and automated methods to verify match hypotheses. In work reported last year {Mundy et al88].
we described a feature assessment metric and initial work in using the metric to select minimal sets of 3-D
features. We are continuing our efforts in that area. Using polyhedral models for some aircraft, the vertex
selection software considered all possible vertex pairs and selected a mimimal set. The results of using these
selected vertex-pairs agreed very closely to hand selected vertex-pair sets. An equally significant area that
we have devoted our efforts to this year is automated methods for hypothesis verification. Two papers in this
workshop deal with the topic, [Heller and Stenstrom| and [Thompson]. The first describes our investigation
of methods to automatically determine whether a hypothsized recognition instance is in fact supported
by the underlying image data. In the past our verification techniques have been largely manual and rely
on the operator to estgblish plausibility. The need to automatically verify correct hypotheses (and reject

'Work at GE was supported in part by the DARPA Strategic Computing Vision Program in conjunction with the Army

Engineer Topographic Laboratories under Contract No. DACA76-86-C-0007 and the Air Force Office of Scientific Research
under contract No. F49620-89-C-0033.
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imcorrect hypotheses) is important for another reason. Due to errors in segmenting the original image or to
Inaccuracies in forming 2-D features or perspective transformation effects, it is often the case that we need
to use fairly loosely specified match detection criteria. We would like to be able to select likely candidates
from this larger, more loosely specified set and then improve the accuracy of recognition. In [Thompson], we
describe iterative procedures to improve or refine transforms. Automated hypothesis verification routines
are required to select likely candidates and to control the iterative processes.

The modeling efforts reported on last year have continued. We have continued to expand the capabilities
of our automated modeller. Two examples that we have created include a model of a Blackjack bomber (with
approximately 50 faces) and a model of a prototype Mars ascent vehicle (with approximately 200 faces).
Both models were created from outline drawings and luminance images in a largely automated fashion.

GEOMETRIC REASONING PROGRESS

Much of our past work in geometric reasoning has been directed towards the problem of automated
methods for model construction. Since our basic approach to object recognition has been largely model-
driven, we have necessarily pursued research into geometric model formation. Work we have described in the
past featured the use of multiple modalities such as luminance and range data as well as luminance methods
that use Boolean intersection techniques to build models.

A second approach to automatically producing models was to use geometric reasoning techniques to
establish a set of constraints for an object that would capture the geometry of the object from projections
(photographs) of the object. In the process of refining approaches to this goal, much work has been done
on identifying the nature of the constraint equations and in identifying methods that can be applied to the
solution of the resulting constraint equation sets.

A new direction in the application and development of geometric reasoning techniques has been initiated.
Motivated by our work in object re.ognition and scene modeling for photointerpretation [Corby et al], we
have begun work on the synthesis of symbolic and numerical methods for solving systems of geometric
constraint equations. Object models and the configuration of such objects in the world can be represented
as a set of algebraic equations and inequalities which represent the constraints imposed by object geometry
and by cartographic data. The advantage of representing objects and environments in terms of censtraints
1s that multiple sources of information can be integrated in a uniform fashion. The central problem is to
develop reliable and efficient mcthods for solving the constraint equations.

We have carried out modeling experiments with a nonlinear programming package available under the
IMSL library. The results are described elsewhere in these proceedings [Mundy and Vrobel]. It is clear
that a purely numerical approach does not provide adequate robustness. Consequently, we have begun the
development of a hybrid approach where symbolic geometric reasoning techniques are used to define the
singularities and poor convergence regions of the constraint manifold. An algorithm has been developed
for determining the free paramecters of a model structure. An algebraic technique has also been developed
for determining the singularities of the jacobian of the constraint equations [Mundy and Vrobel]. The final
goal is to be able to automatically generate robust numerical algorithms from a symbolic specification of the
model and environment geometry.

Our effort in the development of efficient techniques for reasoning about nonlinear inequalities is contin-
uing. The research is directed at the problem of matching parametric object models to image features. The
errors in image segmentation and model definition are represented as tolerance inequalities bounding the
measured features. We have completed our study of SUP-INT algorithm and tiie use of the Groebner basis
to rewrite the terms of the inequalities in conjunction with a system of equations [Final Report].

A new approach is being explored which converts a system of nonlinear inequalities into a linear form
by abstracting each nonlinear term into a single variable [Cyrluk and Kapur]. The linear system is solved
using the simplex or SUP-INF algorithms. The resulting bounds on the nonlinear term are then propagated
inward to bound individual variables. The initial results are quite encouraging and should be applicable to
other Al applications, such as qualitative reasoning.
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UNDERSTANDING SCENE DYNAMICS

Bir Bhanu

Honeywell Systems and Rescarch Center
3660 Technology Drive
Minneapolis, MN 55418

ABSTRACT

The objective of our work in rnderstanding scene dynamics is to develop robust techniques for target tracking
and recognition from a moving robotic vehicle. The topics currently under investigation are: decomposition of complex
vehicle motion; qualitative 3-D scene modeling; target motion detection and tracking; map-based target tracking; incr-
tial scnsor integrated obstacle detection; adaplive segmentation; 3-D target model acquisition and refinement; landmark
rccognition; and terrain interpretation.  This paper summarizes the progress made in each of these arecas during the
period from February 1988 to March 1989. We also present a bricf discussion on scientific experiments, machine
learning for target recognition, and scientific performance cvaluation of vision algorithms and systems.

1. INTRODUCTION

This paper provides an overview of the research performed by our group during the past year. Our research in
understanding scene dynamics is directed towards knowledge-based interpretation of scene dynamics and modcl-based
target recognition. The key accomplishments of our work during the past year are: We have developed qualitative rea-
soning and "3-1/2-D" modeling techniques for detecting and tracking moving targets from a mobile platform in simple
curved road scenes. The concept of fuzzy focus of cxpansion, which allows a very accuratc detcrmination of the
instantaneous direction of a moving vchicle and camcra rotations along the two axcs (pan and tilt only), has been
demonstrated.  We have also demonstrated the "dynamic model maiching” concept for landmark recognition, where the
model generation and maiching process dynamically changes as a function of range to the landmark and perspective as
viewed by a mobile platform. In addition, we have performed initial cxperiments in digital map integrated target track-
ing.

We have investigated the following major topics:
(1)  Qualitative motion detection and tracking,
(2) Inertial sensor integrated motion analysis,

(3) Machine learning for adaptive segmentation, target model acquisition, and target model refinement,
(4)  Dynamic model marching for landmark recognition, and
(5)  Hierarchical symbolic grouping for intcrpretntion of terrain.

The synopsis of the technical achievements in each of these technical arcas is given below. We also present a bricf

discussion on scientific experiments, machine learning for target recognition, and scientific performance evaluation of
vision algorithms and systems.

One of the primary objectives of scientific performance evaluation is the establishment of a national research
database of computer vision imagery. This databasc will be maintained in locations accessible to all members of
DARPA’s IU community through a set of uniform access proccdures. Another objective is the standardization of ter-
minology, benchmarks, and a characterization of the computer vision rescarch infrastructure. Also, we will define a set
of techniques and modcls for algorithm/system performance evaluation of selected matured vision algorithms.

2. QUALITATIVE MOTION DETECTION AND TRACKING

We have developed a unique approach called DRIVE (Dynamic Reasoning from Imcﬁalcd Visual Evidence)
based on qualitative reasoning and modeling for target motion detection and tracking.3:4.14.15. 17,18 The DRIVE system
performs dynamic scene understanding nceded to support the application of smart weapons and autonomous navigation
of robotic vchicles. Instead of refining a single quantitative description of the observed cnvironment over time, multi-
ple qualitative interpretations of the scene are maintained simultancously. This technique offers considerable flexibility
over traditional numerical techniques which arc often ill-conditioned and noise-sensitive. With DRIVE, an autonomous
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system can (i) detect and classify moving objects in the scene, (ii) estimate the vehicle’s egomotion, and (iii) derive the
3D structure of the stationary environment,

The 3-D motion of targets is obtained from displaccment vectors of point features without any knowledge about
the underlying 3-D structure, discovering inconsistencics between the curmrent state of the %ualitative 3-D scene model
and the changes actually observed in the scene, and by detecting moving edges and regions.% 13

DRIVE uses a new algorithm for computing the region of possible focus-of-expansion (FOE) locations in image
sequences, called the fuzzy FOE.'6.17 This computation is accomplished in a unique manner by separating the rota-
tional and translational components of the vehicle’s motion and using a robust method for computing the displacement
vector between two images using adaptive windows, 13

The ’fuzzy’ FOE algorithm allows the direction of instantancous heading of an autonomous land vehicle to be
precisely determined within 1° using image information exclusively. The results obtained using ALV imagery taken at
five different sites demonstrate the algorithm’s performance capabilities. This result has significant scientific impor-
tance for targeting applications. It allows the determination of self motion of moving imaging devices. Rotation in the
horizontal and vertical directions (pan and tilt only) of £ 5° or larger can be successfully handled by the algorithm 3
Morcover, it allows the use of passive approaches for surveillance activities that must detect and track moving targets
and must detect and avoid obstacles using passive sensors mounted on a mobile platform.

Experiments have been carried out on 262 frames of ALV data taken at 5 different sites. Figures 1 and 2 illus-
trate the results.

Figure 1 shows the original image with the interesting points after cdge detection and computation of the focus of
expansion. Figure 2 shows the qualitative reasoning and modcling process. There are two cars in the images, one
approaching the vehicle and the other receding from the vehicle. Both of the moving cars have been detected. The
reasoning process is based on the changes in the expansion patiern and uses a camera model.

We have developed preliminary algorithms to integrate the DRIVE system with digital terrain elevation and land
cover data. These algorithms provide information about the map location of the moving targets, the road label on
which the targets are possibly traveling, and neighboring landmarks. Such information is desired for military applica-
tions and we have performed initial experiments to establish its usefulness in detecting moving targets in both high
clutter and 'ow contrast situations, Figure 3 shows an example of target detection under low contrast and high clutter
situation. Target map location, the road segment on which the car is traveling, and nearby landmarks have also been
detected by the algorithms which integrate map data with the motion algorithm suite.

The paper by Bhanu et. al.!3 provides details of the intcrest point sclection, disparity analysis, fuzzy FOE, quali-
tative scene model, map-based tracking, and edge/region bascd approaches.

3. INERTIAL SENSOR INTEGRATED MOTION ANALYSIS

Land navigation rcquires a vehicle to steer clear of trees, rocks, and man-made obstacles in the vehicle’s path
while vehicles in flight, such as rotorcraft, must avoid antennas, towers, poles, fences, tree branches, and wires strung
across the flight path. Automatic detection of these obstacles by passive scnsors and the nccessary guidance and con-
trol actions triggered by such detection would facilitate autonomous vehicle navigation,

Many types of existing vehicles contain inertial navigation systems (INS) which can be utilized to greatly
improve the performance of several computer vision applications such as obstacle detection, target motion detection,
target tracking, sterco, etc. and make them uscful for practical military and civilian applications. As an cxample,
motion analysis techniques can effectively usc the output of an INS to improve interest point selection, matching of the
interest points, and the subsequent motion detection, tracking, and obstacle detection.

We are using INS measurcments (o cnhance the quality and robustness of motion analysis techniques for obstacle
detection and thereby providing vehicles with new functionality and capabilitics. Details of the INS integrated motion
anlysis for obstacle detection are given in the paper and rcports by Bhanu, Roberts, and Ming.9:1

4. MACHINE LEARNING FOR ADAPTIVE SEGMENTATION AND
TARGET MODEL ACQUISITION/REFINEMENT

4.1 Adaptive Segmentation Using Genetic Algorithms

Image segmentation is typically the first, and most difficult, task of any automated image understanding process.
All subsequent interpretation tasks, including feature extraction, object detection, and object recognition, rely heavily on
the quality of the segmentation process. Despite the large number of segmentation techniques presently available,!-19
no general methods have been found which perform adequatcly across a diverse sct of imagery. Only after numerous
modifications to an algorithm’s control parameter sct can any current mcthod be used 1o process the wide diversity of
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Figure 1: Dircction of instantancous heading for a moving platform is precisely given within 1°, which is a greater ac-

curacy than human visual performance.
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Figure 2: Qualitative reasoning and scene modeling provides good target motion detection and tracking capabilities

from a mobile platform.
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Figure 3: Digital map information is used to track moving targets under high clutter and low contrast scenarios.

151

A .




images encountered in dynamic outdoor applications such as the operation of an autonomous robotic land/air vehicle,
automatic target recognizer, or a photointerpretation task,

The image segmentation problem can be characterized by several factors which make parameter selection process
very difficult. These factors include numerous control parameters, lack of segmentation model, and problems associ-
ated with the evaluation of segmentation.

We are using a machine learning technique known as a genetic algorithm, to perform adaptive segmentation in a
closed loop feedback system. Genetic algorithms allow the segmentation process to adapt to changes in image charac-
teristics caused by variable environmental conditions such as time of day, time of year, clouds, rain, etc. The genetic
algorithm efficiently searches the enormous hyperspace of segmentation parameter combinations using a collection of
search points known as a population. By combining high performance members of the current population to produce
better parameter combinations, the genetic algorithm is able to locate the parameter set which maximizes the segmenta-
tion quality criteria. The paper by Bhanu, Lee, and Ming’ provides details of the adaptive image segmentation process.

4.2 Target Model Acquisition and Refinement

A major technology gap in state-of-the-art model-based object recognition for outdoor scenes is the process of
model (natural or man made) acquisition. Generally man made object models are fixed and they do not have any
learning capability; therefore, they are not adequate by themselves for object recognition in dynamic environments.

Due to recent advances in machine learning technology, some of the problems encountered in the target recogni-
tion domain seem to be resolvable. Learning allows an intelligent recognition system to use situation context in order
to understand images. This context, as defined in a machine learning scenario, consists of a collected body of back-
ground knowledge as well as environmental observations which may impact the processing of the scene.

Machine leaming facilitates two main breakthroughs in the target recognition domain: automatic knowledge base
acquisition and continuous knowledge base refincment. The use of Icarning in the knowledge base construction will
save the user from spending the enormous amount of time nccessary 1o derive target models and databases. Knowledge
base refinement can then be incorporated to make any necessary changes to improve the performance of the recognition
system. These two modifications alone will serve to significantly advance the present abilities of most target recogni-
tion applications.

We are developing a TRIPLE: Target Recognition [ncorporating Positive Learning Expertise system for
automated model acquisition and rcfinement. The system uscs a multi-strategy technique; two powerful leaming
methodologies are combined with a knowledge-based maiching technique to provide robust target recognition. Using
dynamic models, TRIPLE can recognize targets present in the database. If necessary, the models can be refined if
errors are found in the representation. Additionally, TRIPLE can automatically store a new target model and recall it
when that 1arget is encountered again. Finally, since TRIPLE uscs qualitative data structures to represent targets, it can
overcome problems such as image noise and occlusion.

The two main learning components of the TRIPLE system are Explanation-Based Learning (EBL) and Structured
Conceptual Clustering (SCC). Explanation-based learning provides the ability to build a generalized description of a
target class using only one example of that class. Structured conceptual clustering allows the recognition system to
ciassify a target based on simple, conceptual descriptions rather than using a predctermined, numerical measure of simi-
larity. While neither methed, used scparately, would provide substantial benefits to a target recognition system, they
can be combined to offer a consolidated technique which employs the best features of each method and is very robust.
Tl}e paper by Bhanu and Ming® provides more details of the TRIPLE system for target model acquisition and
refinement.

5. DYNAMIC MODEL MATCHING FOR LANDMARK RECOGNITION

We have developed a technique called PREACTE (Perception REAsoning ACTion and Expectation) based on
dynamic model matching for landmark recognition from a mobilc platform.20-2! The technique can recognize landmarks
and other objects from partial and complete views in dynamic sccnarios. It relies on the generation of multiple land-
mark descriptions from 3D models based on diffcrent estimated ranges and aspect angles. These descriptions are a
result of feature, spatial, and geometric models of a single landmark. Expectations about the landmarks (appearances)
vary dynamically as the autonomous robot approaches the landmark. Dynamic Model Matching also includes the gen-
cration of specific landmark recognition planning strategics whereby different features of different landmarks are
emphasized at varying ranges. It is an expectation driven, knowledge-based approach and uses limited map information
for updating the ALV'’s location in the map.

Figure 4 illustrates an example of dynamic model matching for landmark recognition from a mobile platform.
Note that landmark recognition allows the determination of the ALV’s position within 3 feet compared o an inertial
position error of 105 fect over a distance of one mile. Figures 5 and 6 provide three examples of landmark recognition
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(a yellow gate and two wooden gales) taken at two different times at the Martin Marietta test site. It is o be noted
that segmentation results affect the recognition results. Being very close to a landmark does not necessarily mean that
its segmentation will be better than the segmentation of the image acquired at a greater range.

6. HIERARCHICAL SYMBOLIC GROUPING FOR INTERPRETATION OF TERRAIN

An autonomous robotic vehicle must be able to navigate not only on the roads, but also through terrain in order
to execute its missions of surveillance, search and rescue, and munitions deployment. To do this the vehicle must
categorize the terrain regions it encounters as to the trafficability of the regions, the land cover of the regions, and
region-to-map correspondence. Our approach for terrain interpretation employs a robust texture-based algorithm and a
hierarchical region labeling scheme for ERIM 12 channel Multi-Spectral Scanner data. The technique, called HSGM
(Hierarchical Symbolic Grouping for Multi-spectral data), is specifically designed for multi-spectral imagery, but is
appropriate for other categories of imagery as well. For this approach, features used for segmentation vary from
macro-scale features at the first level of the hierarchy to micro-scale features at the lowest level. Examples of labels at
the macro-level are sky, forest, field, mountain, road, etc. Figure 7 shows texture gradient images, and the final region
boundaries for large regions. These regions are labeled using a knowledge-based classifier.

For each succeeding level of the hierarchy, the identified regions from the previous stage are further subdivided,
if appropriate, and each region’s labeling is made more precise. The process continues until the last stage is reached
and no further subdivision of regions from the preceding stage appcars to be necessary. Examples of region labels for
this level of the hierarchy are gravel road, snowberry shrub, gambel oak tree, rocky ledge, etc. Further development of
the technique will employ multiple sources of a priori information such as land cover, terrain elevation map informa-
tion, range data, seasonal information, and time of day.

Details of the HSGM technique with results and examples from real imagery are given in papers by Bhanu and
Symosek.!1.12

7. VISION-BASED TARGETING EXPERIMENTS

As discussed earlier, we have developed two key algorithm suites, called DRIVE (Dynamic Reasoning from
Integrated Visual Evidence) and PREACTE (Perception, REAsoning, ACTion and Expectation). DRIVE accomplishes
target motion detection and tracking while PREACTE performs landmark recognition. We plan to advance this
rescarch by performing a sct of scicntific experiments directed towards a practical mobility and targeting application of
a robotic combat ~chicle.

We plan to conduct scientific experiments in two arcas: landmark recognition for path traversal and target motion
detection and tracking. Two series of experiments are planned, one in each of these areas, Each experimental series
begins with data collection and procceds through progressively more difficult scenarios. The final experiments in the
serics will be characteristic of practical mobility scenarios for a robotic combat vehicle. For both series of experi-
ments, the vehicle will be in continuous motion.

Landmark recognition experiments include laboratory landmark recognition tests using off road data; non-real
time landmark recognition in off road traversal by the ALV; real time dynamic landmark recognition in off road traver-
sal by the ALV; and dynamic landmark modcl learning with rcturn path traversal. Motion detection and tracking
expeniments involve verifying motion results against land navigation data; non-rcal time detection of multiple moving
objects while maintaining reasonable rotation components of the vehicle; rcal time detection of multiple moving
objects; integrating ETL map data with target motion detection and tracking; and advanced experiments carried out
under more difficult visual scencs involving low contrast and high clutter.

We also plan to develop a flexible software architecture and the associated software for "real time" instrumenta-
tion and cvaluation of the landmark recognition and the motion detection and tracking algorithms. Some of the impor-
tant aspects of this work involve defining the criteria for evaluation and acquiring, retrieving, and presenting the desired
information in meaningful ways so as to provide insight into the associated vision algorithms,

8. MACHINE LEARNING FOR TARGET RECOGNITION

Present target recognition systems arc unable to adapt to changes in environmental conditions, target variations,
and the unexpected appearance of new targets. Each of these situations affects the appearance of the targets in the
image, which in wrn, degrades the overall performance of current gencration recognition system.

One of the key challenges to automating the target recognition process is that of automatically responding to
changes occurring in the fargets scen in an image. We address this problem at every stage of the multi-level vision
problem by a unique multi-strategy machine learning approach not available in any current model-based recognition
system. We want to show that significant bencfits can accruc through applying machine learning technology to

153




£9v2-AHD-88 Y € = uoiubooas wewpue| Buisn volsod Ay Ul 10413 BIED MOJIBA By, 40

ebew) paewbes Y SD1 = 8pi 8uo J8A0 WejsAs SN Ul Jo1IT uoleluBsaIday puqgAl

190000 = ATV ‘0§ Auteysoun eyg
12°0 = e1eb mojjaA 10} 82uBPLUOD UOIUBCOBY

arh o
“ e » o

N
\

uonebei66e ebpeimouy

S : 104 Buiuosees (enuepiae
\ Tl'r eanebou pue BAlSOg -

o sdiysuoijeje. pue sued Aq

(aAnedsied ‘sbuel)4-siapopy
48Y| pue syieLipueT peipeld

. | Syewpue jo uotuuboosy .
~ | anloedsied

L - e pue ebues yum seueA f// A

uolduosep |opow - %/ 4
N

Sujysiew
{apoy oqpwueukqg

eseqeie(

1opop
syewpuey

<

18pOy
eiowe)
S.8[01Y8A
Buinopy

aseqeje() urene ) depy reubig

Figure 4: Example of Dynamic Model Matching for landmark recognition from a mobile platform.
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automatically acquire new target models and update their descriptions; to learn new target features based on perceptual
cucs; and to adapt segmentation parameters using genetic algorithms.”

Through an in-depth analysis, performed by Honeywell2 on the applicability of state-of-the-art machine learning
technology to model-based vision, we have developed the concepts for a novel machine learning system, called ORA-
CLE (Object Recognition Accomplished through Consolidated Learning Expertise). The ORACLE system incorporates
explanation-based learning, structured concepiual clustering, genetic algorithms, and learning by examples into a
multi-strategy leaming approach for automated target recognition. At the high level of computer vision, ORACLE util-
izes the characterization and aggregation capabilities of explanation-based learning, structured conceptual clustering,
and similarity-based learning in the target recognition and learning process. By combining these three leamning systems,
ORACLE overcomes the inherent limitations of the individual techniques and provides solutions to practical problems
in model-bascd vision technology such as the need for automated model acquisition and refinement. During the inter-
mediate level vision processing, ORACLE uses explanation-based lcarning with a perceptual cue database to acquire
new target features. Finally, at the low level of vision, ORACLE uses genetic algorithms for parameter adaptation

cagatll)_iliﬁy. Thus, the ORACLE system provides a learning capability at all the three levels of vision: low, intermediate
and high.

9. SCIENTIFIC PERFORMANCE EVALUATION OF VISION ALGORITHMS AND SYSTEM

At present, very little work has been performed in the arca of evaluation for image understanding algorithms and
systems. In the DARPA-sponsored image understanding research, a wide variety of algorithms and systems are being
developed for photointerpretation, navigation, manufacturing, cartography, and targeting applications. Scientific (both
quantitative and qualitative) performance evaluation of diverse vision algorithms and systems will help in advancing the
computer vision ficld at a faster pace, which in tum will icad o thc most rapid fielding of computer vision technology.
Effec.dve performance cvaluation will allow the measurcment of not only the qualitative advancements in the computer
vision field, but will also help to quantify the progress in the ficld. Most importantly, scientific performance evaluation
will provide more rapid technology transfer (sec Figure 8) to DoD applications by reducing the time needed to develop
and validate robust vision algorithins. Figure 9 and 10 show algorithm cvolution cycle and the evolution of algorithms.
The four phases of the evolution cycle are conceptualization, gencration, cvaluation and adaptation. Once the algo-
rithms have shown their potential value, they can be subjected to automatic evaluation.

Life cycle of any technology consists of four phases as shown in Figure 11. The maturity of any area (applica-
tion arcas or low, intermediate or high levels) of image understanding is related to the degree to which agreemcnt on
benchmarks can be reached and performance evaluation can be conducted.

Objective of performance evaluation is not to find out "the best” algorithm, but quantitative/qualitative under-
standing of capabilities of algorithms and systems. Evaluation works best when it is not tailored for a particular imple-
mentation; time to run the test is short; no new systems are designed; it has extreme cases especially those that cause
known algorithms to fail; it has as extensive set Of test images; anyonc can submit resulss; and researchers perform the
test on their own system.

It is extremely important to develop quantitative performance criteria for image understanding algorithms for
svveral reasons:

(1) To compare various "matured” algorithms and sysiems and to predict their performance in a given
scenario and/or for a specific application,

(2) To study the behavior of an application system and its components under different conditions and param-
eter settings, so as to be able 1o find the optimum performance achievable and the performance bounds
of its components,

(3) To understand the characteristics of the imagery that affect the performance of the algorithms,
(4) To find common functional clements for an application among the algorithms currently in use,

(5) To help the algorithm developer choose the appropriate algorithms for his/her application and rescarch,
and

(6) To provide an objective and complete evaluation mcthodology for standardization purposes.

Performance evaluation allows performance analysis (slrcnglhs[weakncsses), sensilivity analysis, performance
models. All these lead to prediction of algorithms and prediction is an important clement of science.

The critical ingredients for scientific performance cvaluation are:
(@) Image database groundtruth,
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(b) Techniques for performance evaluation,
{¢) Common system environments (KBVision and others).

Some of the problems with performance evaluation are:
1. Lack of appropriate database,
2 Slightly different problem statements and assumptions nzed different data sets,
3. Difficulty to quantify algorithm performance, many facets of the problem,
4 Interpretation of evaluation results (who?)

There are two solutions: natural evolution or concrete action 10 promote the maturation of IU tech base. We con-
centrate on the second solution.

We firmly believe that the effective characterization and prediction of algorithm performance is an essential step
in transforming computer vision from an art to a science. The ability to successfully predict performance depends on a
clear understanding of the complex relationship among the input data, algorithm operations, and produced results.

Through active interaction with the DARPA 1U/SC community, the following objectives are pursued for scientific
performance evaluation.

(1)  National rescarch database of computer vision imagery,
(2)  Characterization (taxonomy) of vision research,
(3) Benchmarks for performance measurcment of algorithms/systems (what to measure?),

(4)  Techniques and models for "matured” algorithms and systems for performance evaluation (how to meas-
ure?),

(5)  Workshop of DARPA IU community on performance cvaluation.
The details of the above objectives are now discusscd.

9.1 NATIONAL RESEARCH DATABASE OF COMPUTER VISION IMAGLERY

The objective of establishing a national rescarch image databasc is to promote the orderly development and dis-
semination of image information o serve the needs of DARPA 1U algorithms/systems developers. This encompasses
the standards for data interchange and activitics for data collection, data organization, and data disuibution.

The important considerations for these databascs arc: ground truth data requircments (site, sensor characterization,
sensor platform, objects of interest, mctcorological conditions), ground truth recording procedures, and database
quantity/quality/variety requircments. The ground truth information is very critical and many tim~s is not avanable or
is too expensive to capture. Whenever the ground truth information is available, imagery should be partitioned inte
two catcgories: For some imagery, the ground truth is supplied 1o the rescarcher so that he/she can usc them in the
development of vision algorithms; the other category should be the imagery for which ground truth is scquestered and
uscd to cvaluate the robustness of the algorithms after development.

One potential use of an accepted imagery database would be for evaluating various "matured” algorithms that
perform the same function (c.g., stereo, segmentation, motion detection, object recognition in range images, etc). Each
year, the results of this evaluation, which have a well defined objective and scicntific experiment, can be publicized at
the Image Understanding Workshop and there would be recognition for rescarchers who demonstrate the best results
using the "matured” algorithms for a given set of images (for a given application). More importantly, the overall pro-
gress made by the TU community would be made apparent.

Our short-term objective is to define and make available a standard set of images to be used by the DARPA U
community for algorithm development and cvaluation. Some of the common functions are: sterco, motion algorithms,
object recognition in outdoor/indoor scenes using TV and range images, clc.

Somc of the currently available databases that may mect our necds arc:

Marun's Collage | and Collage 2 ALV Database: Contains a large number of color TV, multispectral, and range
images. Ground trath information is limited.

USC Database: Contains a large number of texture, acrial, and color images. Ground truth is limited.
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F CMU: NavLab, Calibrated Imaging Lab
g Martin Marietta: ALV database
Utah Range Database: Contains four sets of 33 images (5.108 Megabytes). Data is available in Unix TAR for-
f mat, 1600 BPI tape. This data includes:
3 University of Utah Images: The set is encoded in White Scanner format. Consists of images of bottles,
1 cylinders, polygons, and various parts including the Renault auto part from INRIA. The parameters and
details of the scanning systems are known for the set of images scanned at Utah.
f SRI Images: Grapes and space shuttle images.
North Carolina State University: PC board, the image of Victor Hugo, and others.
ENSI Paris: Victor Hugo image obtained in one degree aspect increments.
The sample image sets cun be scparated by class as well. In the case of stereo imagery, the photogrammetry
L community has distributed a very good sterco database (not epi-polar constrained) with known ground truth. Imagery
acceptable for motion rescarch is available from SRI, which has some image sequences that have good imaging infor-
y mation and some partial depth ground truth.
Note that database is closely ticd up with evaluation (sce Figure 12) Database should also be viewed as cxiensi-
ble, not the finished product. In summary some of the issu 3 related with database are:
(1) Models for evaluation,
(2) Requircments of database
(3) Collection of database,
(4) Organization of database,
{ (5) Maintenance of database,
(6) Access and usage expectations,
(7)  Groundtruth information - sensor, map, other ancillary information,
s (8) Standards for imagery and non-imagery information,
(9) Types of data,
(10) Specific IU algorithms, systems and applications.
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We are working on a detailed plan for data acquisition and accessibility. We are identifying core data sct and
plan to expand it in a systematic way.

9.2 Characterization of Vision Research Infrastructure or Taxonomies of Vision Research
A current detailed taxonomy of vision research is desired which is based on diverse criteria such as:
. Applications (navigation, terminal homing, remotc sensing, etc.),
. Class of sensors (TV, FLIR, Range, SAR, etc.),
. Use of multisensors (TV & range, FLIR & Range, etc.),
. Functionalities (segmentation, feature extraction, texture analysis/synthesis, etc.),
. Principles (top down, bottom up, etc.),
. Reasoning processes (qualiative, perceptual, cic.),
. Hardware architectures (systolic, array, cellular, ctc.),
. Implementation techniques (VHSIC, VLSI, discrete, etc.), and
) Use of auxiliary information (digital clevation map data, land cover data, etc.).

The rationale for characterization is 1o help in the organization and development of image database, definition of
benchmarks and methodologies for evaluation. This characterization will provide a common framework of terminology
and description to promote improved communication among the members of the vision community and between tech-
nology developers and appliers. Since the computer vision field is stifl quite young and undergoing rapid evolution, the
proposed taxonomy should bc viewed as a "snapshot” of the ficld today and will likely need to undergo significant
modifications and extensions as the ficld progresses. After the development of the proposed taxonomy, the develop-
ment of the other three related goals will be pursued: a common image database, general vision system benchmarks,
and an cffective methodology for performance evaluation. Onc can think of a very deep tree whose leaf nodes are very
specific (for example, the segmentation of tank targets at "close” distances in range images for terminal homing appli-
cations). We associate the specific database, benchmarks, and methodology with these leaf nodes for performance
cvaluation.

9.3 Terminology and Benchmarks for Performance Evaluation

It is important 0 have common terminology and benchmarks for performance evaluation. Subtle differences in
mcaning can be very important for evaluation. Even terms such as "ground truth” mean different things to different
people. A lexicon that cstablishes standard terminology and standard benchmarks will provide uniformity in carrying
out scicntific experiments for performance cvaluation.

9.4 Scientific Methodology and Models for Performance Evaluation

Since onc of the goals of computer vision is to build machines that can solve real world problems, we need to
definc the systcmatic methods and models for performance evaluation of individual vision algorithms (scgmentation,
feature computation, texture measurcment, cic.) and systems (object recognition, vision-based navigation, cic.) for a
prrticular application (terminal homing, surveillance, etc.). We nced 1o thoroughly understand the practical experimen-
L. 'esigns and the errors of observation and their treatment. As an example, the results of segmentation are still
cvaluatcd qualitatively. They need to be evaluated, in part, on the basis of how well the implicit or explicit model in
the technique is able to predict performance. In other words, the quality of an algerithm should depend not only on
certain test performance resuits, but on the accuracy of the model that predicts algorithm performance over a diverse
databasc of imagery. If an algorithm performs well over a narrow database (a few 1mages), but a resulting performance
prediction model proves 1o be inaccurate over va larger databasc, the proper conclusion is that the overall algorithm
performance is deficient. In this framework, evaluation of an algorithm consists of two components: an algorithm and
the associated performance prediction model. We can refer to the combination of these two components as a general-
ized algorithm. Simple quantitative measures (which may or may not have intuitive physical significance), such as the
number of pixels misclassified with respect to the true object, the corrclation coefficient between the truc and extracted
objcct, mean square error between the true and extracted object, object-to-background contrast, and the metric based on
these criteria, can be clfectively used for scgmentation evaluation.

Carrying this evaluation process a step further, we need an evaluation methodology for the evaluation of com-
pleic systems such as an object recognition system, The system perfonnance should be evaluated on the basis of the
task it is able to perform in a given environment considering such factors as sensor type, resolution of data, type of
objects, and complexity and information content of the scenc. It is logical o assume that to obtain the optimum




performance of the system, it is essential to achieve the maximum atainable performance of each of its components.
However, it may or may not satisfy the goals of the system performance, since most of the image understanding com-
ponents are¢ nonlinear. Here a top-down approach for evaluation may be more meaningful than a bottom-up approach.

In summary, the emphasis of performance evaluation is on computer vision problems, scientific experimental
design and interfaces between vision components and functions. We need to define a performance metric for each of
the image understanding algorithms as well as a performance metric for the system as a whole. This can be done for
the specific matured algorithms/systems being pursued by the Image Understanding community.
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Abstract

This paper describes the second in a series of DARPA-sponsored efforts to evaluate the merits of
various parallel architectures as applied to the problem of knowledge-based machine vision. The first
DARPA benchmark considered only the execution times for a set of isolated vision-related tasks.
However, the overall performance of an image interpretation system depends upon more than the
execution times of a few key tasks. In particular, the costs of interactions between tasks, input and
output, and system overhead must be taken into consideration. Thus, this new benchmark addresses the
issue of system performance on an integrated set of tasks, where the task interactions are typical of
those found in complex vision applications. Also, unlike the majority of benchmarks, which are
numerically oriented and whose components are small, stand-alone programs, this benchmark tests
system performance on many types of processing and in the context of a larger program. As a resutt,
the benchmark can be used to gain insight into a greater variety of processor capabilities and foibles,
and may thus help to guide the development of the next generation of parallel vision architectures.

Introduction

Knowledge-based image understanding presents an immense computational challenge that has yet to be
salisfied by any parallel architecture. The challenge is not merely to provide a greater quantity of
operations per second, but also to supply the necessary varieties of operations in the required amounts.
Consider that a sequence of images at medium resolution (512 x 512 pixels) and standard frame rate
(30 frames per second) in color (24 bits per pixel) represents a data input rate of about 23.6 million
bytes per second and, in a typical interpretation scenario, many thousands of operations may be applied
to each input pixel in order to enhance, and segment an image and to extract various features from it.
But in addition to these /O and pixel processing requirements, a vision system must be able to do much
more. For example, it must organize extracted image features via perceptual grouping mechanisms,
locate relevant models in a potentially vast store of knowledge and compare them to partial models
derived from the input data, generate hypotheses concerning the environment of the sensor, resolve
conflicting hypotheses to arrive at a consistent interpretation of the environment, manage and update
stored knowledge, and so on.

While traditional supercomputing benchmarks may be useful in estimating the performance of an
architecture on some types of image processing tasks, those berchmarks have little relevance to the
majority of the processing that takes place in a vision system [Duff, 1986). Nor has there been much
effort to define a vision benchmark for supercomputers, since those machines in their traditional form
have usually been viewed as inappropriate vehicles for knowledge-based vision research. However,
now that parallel processors are becoming readily available, and because they are viewed as being
better suited to vision processing, researchers in both machine vision and parallel architecture are

" This work was supported in part by the Defense Advcnced Research Projects Agency under contract
number DACA76-86-C-0015, monitored by the U.S. Army Engineer Topographic Laboratories.
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taking an interest in performance issues with respect to vision. The next section summarizes the work
that has been done in the area of vision benchmarks to date.

Review of Previous Vision Benchmark Efforts

One of the first parallel processor benchmarks to address vision-related processing was the Abingdon
Cross benchmark, defined at the 1982 Multicomputer Workshop in Abingdon, England [Preston,
1986). In that benchmark, an input image was specified that consisted of a dark background with a
pair of brighter rectangular bars, equal in size, that cross at their midpoints and are centered in the
image, and with Gaussian noise added to the entire image. The goal of the exercise was to determine and
draw the medial axis of the cross formed by the two bars. The results obtained from solving the
benchmark problem on various machines were presented at the 1984 Multicomputer Workshop in
Tanque Verde, Arizona, and many of the participants spent a fairly fengthy session discussing problems
with the benchmark and designing a new benchmark that it was hoped would solve those problems.

It was the perception of the Tanque Verde group that the major drawback of the Abingdon Cross was its
lack of breadth. The problem required a reasonably small repertoire of image processing operations to
construct a solution. The second concern of the group was that the specification did not constrain the
a priori information that could be used to solve the problem. In theory, a valid solution would have
been to simply draw the medial lines since their true positions were known. Although this was never
done, there was argument over whether it was acceptable for a solution to make use of the fact that the
bars were oriented horizontally and vertically in the image. A final concern was that no method was
prescribed for solving the problem, with the result that every solution was based on a different method.
When a benchmark can be solved in different ways, the performance measurements become more
difficult to compare because they include an element of programmer cleverness. Also, the use of a
consistent method would permit some comparison of the basic operations that make up a complete
solution.

The Tanque Verde group specified a new benchmark, called the Tanque Verde Suite, that consisted of a
large collection of individual vision-related problems. Table 1 contains the list of problems that was
developed. Each of the problems was to be further defined by a member of the group, who would also
generate test data for their assigned problem. Unfortunately, only a few of the problems were ever
developed, and none of them were widely tested on different architectures. Thus, while the simplicity
of the Abingdon Cross may have been criticized, it was the respondent complexity of the Tanque Verde
Suite that inhibited the latter's use.

Standard _Utilities High Level Tasks

3x3 Separable Convolution Edge Finding

3x3 General Convolution Line Finding_

15x15 Separable Convolution Corner _Finding _

15x15 General Convolution Noise Removal

Affine Transform Generalized Abingdon Cross

Discrete Fourier Transform Segmentation

3x3 Median Filter Line Parameter Extraction

256 Bin Histogram Deblurring

Subtract Two Images Classification

Arctangent(lmagei/Image?2) Printed Circuit_Inspection

Hough Transform Stereo Image Matching

Euclidean Distance Transform Camera Motion Estimation
Shape Identification

Table 1: Tanque Verde Benchmark Suite

In 1986, a new benc!*mark was developed at the request of the Defense Advanced Research Projects
Agency (DARPA). Like the Tanque Verde Suite, it was a collection of vision-related problems, but the
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set of problems that made up the new benchmark was much smaller and easier to implement. Table 2
lists the problems that comprised the first DARPA Image Understanding Benchmark. A workshop was
held in Washington, D.C., in November of 1986 to present the results of testing the benchmark on
several machines, with those results summarized in [Rosenfeld, 1987]. The consensus of the
workshop participants was that the results cannot be compared directly for several reasons. First, as
with the Abingdon Cross, no method was specified for solving any of the problems. Thus, in many cases,
the timings were more indicative of the knowledge or cleverness of the programmer, than of a
machine's true capabilities. Second, no input data was provided and the specifications allowed a wide
range of possible inputs. Thus, some participants chose to test a worst-case input, while others chose
"average" input values that varied considerably in difficulty.

11x11 Gaussian Convolution of a 512x512 8-bit Image
Detection of Zero Crossings in a Difference of Gaussians Image_
Construct and Output Border Pixel List

Label Connected Components in a Binary Image

Hough Transform of a Binary Image

Convex Hull of 1000 Points in 2-D Real Space

Voronoi Diagram of 1000 Points in 2-D Real Space

Minimal Spanning Tree Across 1000 Points in 2-D Real Space
Visibility of Vertices for 1000 Triangles in 3-D Real Space
Minimum Cost Path Through a Weighted Graph of 1000 Nodes of Order 100
Find all Isomorphisms of a 100 Node Graph in a 1000 Node Graph

Table 2: Tasks from the First DARPA Image Understanding Benchmark

The workshop participants pointed out other shortcomings of the benchmark. Chief among these was
that because it consisted of isolated tasks, the benchmark did not measure performance related to the
interactions between the components of a vision system. For example, there might be a particularly
fast solution to a problem on a given architecture if the input data is arranged in a special manner.
However, this apparent advantage might be inconsequential if a vision system does not normally use the
data in such an arrangement, and the cost of rearranging the data is high. Another shortcoming was that
the problems had not been solved before they were distributed. Thus, there was no canonical solution
on which the participants could rely for a definition of correctness, and there was even one problem for
which it turned out there was no practical solution. The issue of having a ground truth, or known
correct solution was considered very important, since it is difficult to compare the performance of two
architectures when they produce different results. For example, is an architecture that performs a
task in half the time of another really twice as powerful if the first machine's programmer used
integer arithmetic while the second machine was programmed to use floating point, and they thus
obtained significantly different results? Since problems in vision are often ill-defined, it is possible
to argue for the correctness of many different solutions. In a benchmark, however, the goal is not to
solve a vision problem but to test the performance of different machines doing comparable work.

The conclusions from the first DARPA benchmark exercise were that the results should not be directly
compared, and that a new benchmark should be developed that addresses the shortcomings of the
preceding benchmarks. Specifically, the new benchmark should test system performance on a task that
approximates an integrated solution to a machine vision problem. A complete solution with test data
sets should be constructed and distributed with the benchmark specification. And, every effort should
be made to specify the the benchmark in such a way as to minimize the opportunities for taking
shortcuts in solving the problem. The task of constructing the new benchmark, to be called the
Integrated Image Understanding Benchmark, was assigned to the vision research groups at the
University of Massachusetts at Amherst, and the University of Maryland.

Following the 1986 meeting, a preliminary benchmark specification was drawn up and circulated
among the DARPA image understanding community for comment. The benchmark specification was then
revised, and a solution was programmed on a standard sequential machine. In creating the solution,
several problems were discovered and the bencnmark specification was modified to correct those
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problems. The programming of the solution was done by the group at the University of Massachusetts
and the code was then sent to the group at the University of Maryland to verify its validity, portability,
and quality. The group at Maryland also reviewed the solution to verify that it was general in nature
and neutral with respect to any underlying architectural assumptions. The Massachusetts group
developed a set of five test cases, and a sample parallel solution for a commercial multiprocessor.

In March of 1988, the benchmark was released, and made available from Maryland via network access,
or by sending a blank tape to the group in Massachusetts. The benchmark release consisted of the
sequential and parallel solutions, the five test cases, and software for generating additional test data.
The benchmark specification was presented at the DARPA Image Understanding Workshop, the
International Supercomputing Conference, and the Computer Vision and Pattern Recognition conference
[Weems, 1988]. Over 25 academic and industrial groups, listed in Table 3, obtained copies of the
benchmark release. Nine of those groups developed either complete or partial versions of the solution
for an architecture. A workshop was held in October of 1988, in Avon Old Farms, Connecticut, to
present those results to members of the DARPA research community. As with the previous workshops,
the participants spent a session developing a critique of the benchmark and making recommendations
for the design of the next version.

International Parallel Machines Hughes Al Center

Mercury Computer Systems University of Wisconsin
Stellar_Computer George Washington University
Myrias Computer University of Massachusetts®
Active Memory Technology SAIC

Thinking Machines” Eastman Kodak

Aspex Ltd.” University College London
Texas Instruments Encore Computer

1BM MIT

Carnegie-Mellon University* University of Rochester

Intel Scientific Computers* University of lllinois*

Cray Research University of Texas at Austin*
Sequent Computer Systems* Alliant Computer”

Table 3: Distribution List for the Second DARPA Benchmark
* Indicates Results Presented at the Avon Workshop

The remainder of this paper summarizes those results and recommendations, following a brief review
of the benchmark task and the rationale behind its design.

Benchmark Task Overview

The overall task that is to be performed by this benchmark is the recognition of an approximately
specified 2 1/2 dimensional "mobile" sculpture in a cluttered environment, given images from
intensity and range sensors. The intention of the benchmark designers is that neither of the input
images, by itself, is sufficient to complete the task.

The sculpture to be recognized is a collection of two-dimensional rectangles of various sizes,
brightnesses, two-dimensional orientations, and depths. Each rectangle is oriented normal to the Z axis
(the viewing axis), with constant depth across its surface, and the images are constructed under
orthographic projection. Thus an individual rectangle has no intrinsic depth component, but depth is a
factor in the spatial relationships between rectangles. Hence the notion that the sculpture is 2 1/2
dimensional.

The clutter in tlie scene consists of additional rectangles, with sizes, brightnesses, two-dimensional
orientations, and depths that are similar to those of the sculpture. Rectangles may partially or
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completely occlude other rectangles. It is also possible for a rectangle to disappear when another
rectangle of the same brightness or slightly greater depth is located directly behind it.

A set of models is provided that represent a collection of similar sculptures, and the recognition task
involves identifying the model which best matches the object present in the scene. The models are only
approximate representations of sculptures in that they allow for slight variations in component
rectangle’s sizes, orientations, depths, and the spatial relationships between them. A model is
constructed as a tree structure where the links in the tree represent the invisible links in the
sculpture. Each node of the tree contains depth, size, orientation, and intensity information for a single
rectangle. The child links of a node in the tree describe the spatial relationships between that node and
certain other nodes below it.

The scenario that the designers imagined in constructing the problem was a semi-rigid "mobile”, with
invisible links, viewed from above, with bits and pieces of other mobiles blowing through the scene.
The state of the system is that previous processing has naitowed the range of potential matches to a few
similar sculptures, and has oriented them to correspond with information extracted from a previous
image. However, the objects in the scene have since moved, and a new set of images has been taken
prior to completing the matching process. The system must make its final choice for a best match, and
update the corresponding model with the positional information extracted from the latest images.

The intensity and depth sensors are precisely registered with each other and both have a resolution of
512 x 512 pixels. There is no averaging or aliasing in either of the sensors. A pixel in the intensity
image is an 8-bit integer grey value. In the depth image a pixel is a 32-bit floating-point range value.
The intensity image is noise free, while the depth image has added Gaussian noise.

A set of test images is created by first selecting one of the models in a set. The model is then rotated and
translated as a whole, and its individual elements are then perturbed slightly. Next, a coilection of
spurious rectangles is created with properties that are similar to those in the chosen model. All of the
rectangles (both model and spurious) are then ordered by depth and drawn in the two image arrays.
Lastly, an array of Gaussian-distribution noise is added to the depth image array.

Figure 1 shows an intensity image of a sculpture alone, and Figure 2 shows the sculpture with added
clutter.

Figure 1: Intensity Image of Model Alone Figure 2: Image of Model with Clutter
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Processing in the benchmark begins with some low-level operations on the intensity and depth images,
followed by some grouping operations on the intensity data that result in the extraction of candidate
rectangles. The candidate rectangles are used to form partial matches with the stored models. For each
model, it is possible that multiple hypothetical poses will be established. The benchmark then proceeds
through the model poses, using the stored information to probe the depth and intensity images in a top-
do:vn manner. Each probe can be thought of as testing an hypothesis for the existence of a rectangle in a
given location in the images. Rejection of an hypothesis, which only occurs when there is strong
evidence that a rectangle is actually absent, results in elimination of the corresponding model pose.
Confirmation of the hypothesis results in the computation of a match strength for the rectangle at the
hypothetical location, and an update of its representation in the model with new size, orientation, and
position information. It is possible for the match strength to be as low as zero when there is no
supporting evidence for the match and a lack of strong evidence that the rectangle is absent, as in the
case of a rectangle that is entirely occluded by another. After a probe has been performed for every
unmatched rectangle in the list of model poses, an average match strength is computed for each pose that
has not been eliminated. The model pose with the highest average match strength is selected as the best
match, and an image is generated that highlights the model in the intensity image. Table 4 lists all of
the steps that make up the complete benchmark task.

The benchmark specification requires that this set of steps be applied in implementing a solution.
Furthermore, for each step, a recommended method is described that should be followed whenever
possible. However, in recognition of the fact that some methods simply may not work, or will be
extremely inefficient for a given architecture, implementors are permitted to substitute other methods
for individual steps. When it is necessary for an implementation to differ from the specification, the
implementor is expected to supply a justification for the change. It is also urged that, if possible, a
version of the implementation be written and tested with the recommended method so that the difference
in performance can be determined.

Benchmark Philosophy and Rationale

In writing an integrated image understanding benchmark, the goal is to create an interpretation
scenario that is an approximation of an actual image interpretation task. One must remember,
however, that the benchmark problem is not an end in itself, but is a framework for testing machine
performance on a wide variety of common vision operations and algorithms, both individually and in an
integrated form that requires communication and control across algorithms and reprasentations. This
benchmark is not intended to be a challenging vision research exercise, and the designers feel that it
should not be. Instead, it should be a balance between sim :icity for the sake of implementation by
participants, and the complexity that is representative of a.  vision processing. At the same time, it
must test machine performance in as many ways as possible. A further constraint on the design was the
requirement that it make use of as many of the tasks from the first DARPA benchmark as possible, in
order to take advantage of the previous programming effort.

The job of the designers was thus to balance these conflicting goais and constraints in developing the
benchmark scenario. One resuit is that the benchmark solution is neither the most direct, nor the most
efficient method of solving the problem. However, making the solution more direct would have
eliminated several of the algorithms that are important in testing certain aspects of machine
performance. One the other hand, increasing the complexity of the problem to necessitate the use of
those algorithms would have required significant additional processing that is redundant in terms of
performance evaluation. Thus, while the benchmark solution is not a good example of how to build an
efficient vision system, it is an effective test of machine perforrrance both on a wide variety of
individual operations and on an integrated task. Moreover, having taken a lesson from the Tanque Verde
Suite, the benchmark design attempts to minimize the effort required of the participants, while
maximizing the information obtained.
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Low-Level, Bottom-Up Processing

Intensity Image Depth Image

Label Connected Components 3x3 Median Filter

Compute K-Curvature 3x3 Sobel and Gradient Magnitude
Extract Corners Threshold

Intermediate Level Processing

Select Components with 3 or More Corners

Convex Hull of Corners for Each Component

Compute Angles Between Successive Corners on Convex Hulls

Select Corners with K-Curvature and Computed Angles Indicating a Right Angle

Label Components with 3 Contiguous Right Angles as Candidate Rectangles

Compute Size, Orientation, Position, and Intensity for Each Candidate Rectangle

Model-Based, Top-Down Processing

Determine all Single Node Isomorphisms of Candidate Rectangles in Stored Models

Create a List of all Potential Model Poses

Perform a Match Strength Probe for all Single Node Isomorphisms (see below)

Link Together all Single Node Isomorphisms

Create a List of all Probes Required to Extend Each Partial Match

Order the Probe List According to the Match Strength of the Partial Match Being Extended

Perform a Probe of the Depth Data for Each Probe on the List (see below)

Perform a Match Strength Probe for Each Confirming Depth Probe (see below)

Update Rectangle Parameters in the Stored Model for Each Confirming Probe

Propagate the Veto froin a Rejecting Depth Probe Throughout the Corresponding Partial Match

When No Probes Remain, Compute Average Match Strength for Each Remaining Model Pose

Select Model with Highest Average Match Strength as the Best Match

Create the Output Intensity Image, Showing the Matching Model

Depth Probe

Select an X-Y Oriented Window in the Depth Data that will Contain the Rectangle

Perform a Hough Transform Within the Window

Search the Hough Array for Strong Edges with the Approximate Expected Orientations

If Fewer than 3 Edges are Found, Return the Original Model Data with a No-Match Flag

If 3 Edges are Found, infer the Fourth from the Model Data

Compute New Size, Position, and Orientation Values for the Rectangle

Match-Strength Probe

Select an Oriented Window in the Depth Data that is Slightly Larger than the Rectangle

Classify Depth Pixels as Too Close, Too Far, or In Range

If the Number of Too Far Pixels Exceeds a Threshold, Return a Veto

Otherwise, Select a Corresponding Window in the Intensity Image

Select Intensity Pixels with the Correct Value

Compute a Match Strength Based on the Number of Correct vs. Incorrect Pixels in the Images

Table 4: Steps that Compose the Integrated Image Understanding Benchmark

The great variety of architectures to be tested is itself a complicating factor in the design of a
benchmark. It was recognized that each architecture may have its own most efficient method for
computing a given function. However, ihe purpose of the benchmark requires that the benchmark tasks
and methods be well defined so that the results from different machines will be comparable. Otherwise
the results will include a significant factor that depends on the cleverness of the programmer. Thus the
berchmark specification requests that participants do not take shortcuts in the solution, and that they
use the recommended methods whenever possible. It should be noted that the recommended methods are
not always the most efficient techniques because they were chosen to be as widely implementable as
possible. Thus, while the processing time for a given step or for the entire task may not be the best
performance that a machine can muster, it will be comparable to the results from others. Participants
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were also encouraged to develop timings for more optimal solutions, in addition to the standard solution,
if they so desired.

The designers also recognize the tendency for any benchmark to turn into a horse race. However, that
is not the goal of this exercise, which is to increase the scientific insight of architects and vision
researchers into the architectural requirements for knowledge-based image interpretation. To this
end, the benchmark requires a much more extensive set of instrumentation than simple execution
times. Participants are required to report execution time for individual tasks, for the entire task, for
system overhead, input and output, system initialization and loading any precomputed data, and for
different processor configurations if possible. Implementation factors that are to be reported include
an estimate of the time spent implementing the benchmark, the number of lines of source code, the
programming language used, and the size of the object code. Machine configuration and technology
factors that are requested include the number of processors, memory capacity, data path widths,
integration technology, clock and instruction rates, power consumption, physical size and weight, cost,
and any limits to scaling-up the architecture. Lastly, participants are asked to comment on any
changes to the architecture that they feel would contribute to an improvement in performance on the
benchmark.

Results and Analysis

Due to limitations of time and resources, only a few of the participants were able to complete the entire
benchmark exercise and test it on all five of the data sets. In almost every case, there was some
disclaimer to the effect that a particular architecture could have shown better performance given more
implementation time or resources. It was common for participants to underestimate the effort
required to implement the benchmark, and several who had said they would provide timings were
unable to complete even a portion of the task prior to the workshop. Despite requests to groups that did
not attend the workshop that they submit belated results to be included in this report, not one new
benchmark report has been received. Thus, the results presented here are those that were provided by
the workshop participants. In a few cases, the results have been updated, corrected, or amended since
they were originally presented.

Care must be taken in comparing these results. For example, no direct comparison should be made
between results obtained from actual execution and those that were derived from simulation
[Carpenter, 1987). No matter how carefully a simulation is carried out, it is never as accurate as
direct execution. Likewise, no comparison should be made between results from a partial
implementation and a complete one. The complete implementation must account for overhead invoived
in the interactions between subtasks, and even for the fact that the program is significantly larger than
for a partial implementation. Consider that a set of subtasks might appear to be much faster than their
counterparts in a complete implementation simply because less paging is required to keep the code in
memory. It is also unwise to directly compare the raw timings, even for similar architectures,
without considering the differences in technology between systems. For example, a system that
executes a portion of the benchmark in half the time of another is not necessarily architecturally
superior if it also has a clock rate that is twice as high or if it has twice as many processors.

In addition to the technical problems involved in making direct comparisons, there are other
considerations that must be kept in mind.- For example, every participant expressed the view that
given more time to tune their implementation, the results for their architecture would improve
considerably. What is impressive in many cases is not the raw speed increase obtained, but the
increase with respect to the amount of effort required to obtain it. While this has more to do with the
tools available for developing software for an architecture than with the architecture itself, it is still
important in evaluating the overall usefulness of the system. Another major consideration is the ratio
of cost to performance, since many applications can afford to sacrifice a small amount of performance
in order to reduce the cost of the implementation. In other applications, the size or weight or power
consumption of a system may be of greater importance than all-out speed. One of the purposes of this
exercise has been merely to assemble as much of this data as possible so that the performance results
can be evaluated with respect to the requirements of each potential application of an architecture.
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Thus, in what follows, there is no single best architecture and there are no winners or losers. Each has
its own unique merits and drawbacks, of which none are absolute. To play down the direct comparison
of raw timings, the results for each architecture will be presented separately. The order of
presentation is random, except that the sequential solution is presented first to provide a performance
baseline, and then complete parallel implementations are presented, followed by partial
implementations. Results that were based on theoretical estimations are not included in this report.
The timings in all of the tables are in seconds, for the sake of consistency. Where a timing is zero, it
indicates that the processing time was fess than the resolution of the timing mechanism employed.
Blanks in the tables indicate values that were omitted from the reports that were supplied by the
implementors.

Sequential Solution

The sequential solution to the benchmark was developed in C on a Sun-3/160 workstation. The solution
contains roughly 4600 lines of code, including comments. The implementation was designed for
maximum portability and has been successfully recompiled on several different systems. The only
portion that is system dependent is the actual result presentation step, which uses the graphics
primitives provided for drawing on the workstation's screen. The implementation differs from the
recommended method on the Connected Component Labelling step by using a standard sequential method
for computing this well-defined function. The sequential method is designed to minimize array accesses
and their corresponding index calculations, which is not a problem for array processors, but incurs a
significant time penalty on a sequential machine.

Timings have been produced for the sequential code running on all five data sets, and on three different
machine configurations. The configurations are a Sun-3/160 (a 16 MHz 68020 processor) with 8MB
of RAM, a Sun-3/260 (a 25 MHz 68020) with 16MB of RAM, and a Sun-4/260 (a 16MHz SPARC
processor) with 16MB of RAM. The exira RAM on the latter two machines did not affect performance,
since the benchmark was able to run in 8MB without paging. The 3/260 was equipped with a Weitek
floating-point co-processor, while the 3/160 used only the standard 68881 co-processor. These
results have been corrected since the workshop, where some questions arose as to their validity due to a
difference in the number of connected components extracted. It was determined that the original results
were obtained with a fauity copy of the data set, and the problems vanished when the proper data was
used. Table 5 shows the results for the Sun-3/160, Table 6 shows the Sun-3/260 results, and Table
7 gives the execution times for the Sun-4/260. The timings were obtained with the standard system
clock utility which has a resolution of 20 milliseconds on the Sun-3 systems, and 10 milliseconds on
the Sun-4.

Data Set Sample Test Test2 Test3 Testd
User System User System User System User System User System
Total 794.04 2.94 335.96 2.10 326.84 2.40 549.3 2.52 550.26 2.90
Overhead 4.02 1.06 4.06 0.88 450 1.14 4.60 1.04 4.58 0.94
Miscellaneous 2.24 0.04 2.18 0.04 2.16 0.06 2.12 0.02 2.10 0.02
Startup 0.02 0.00 0.04 0.00 0.02 0.04 0.00 0.02 0.02 0.00
image input 0.60 0.68 0.58 0.54 1.32 0.78 1.50 0.74 1.42 0.66
image output 0.24 0.30 0.30 0.28 0.06 0.24 0.06 0.24 0.08 0.26
Model input 0.92 0.04 0.96 0.02 0.94 0.02 0.92 0.02 0.96 0.00
Label connected components 27.40 0.38 27.46 0.36 28.12 0.28 27.86 0.36 27.88 0.36
Rectangles from intensity 6.42 0.08 4.00 0.14 4.34 0.04 5.36 0.08 5.10 0.24
Miscellaneous 2.06 0.06 1.84 0.02 1.94 0.02 1.94 0.02 1.92 0.06
Trace region boundary 0.52 0.02 0.28 0.02 0.38 0.00 0.42 0.00 0.38 0.06
K-curvature 1.62 0.00 0.80 0.00 0.82 0.00 1.22 0.00 1.10 0.00
K-curvature smoothing 1.26 0.00 0.62 0.00 0.70 0.00 0.96 0.00 1.02 0.02
First derivative 0.46 0.00 0.22 0.02 0.24 0.00 0.28 0.02 0.22 0.02
Zero-crossing detection 0.26 0.00 0.06 0.00 0.04 0.00 0.18 0.00 0.24 0.02
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Final corner detection 0.20 0.00 0.16 0.02 0.18 0.02 0.28 0.02 0.16 0.04
Count corners 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00
Convex hull 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.04 0.00
Test for right angles 0.00 0.00 0.02 0.02 0.00 0.00 0.04 0.00 0.00 0.00
Final rectangle hypothesis 0.02 0.00 0.00 0.00 0.02 0.00 0.02 0.00 D0.02 0.02
Median filter 246.06 0.60 118.82 0.26 92.58 0.28 90.70 0.22 90.66 0.24
Sobel 135.3 0.18 133.14 0.16 135.92 0.18 135.12 0.16 135.14 0.28
Initia) graph match 24.4 0.06 24,94 0.06 26.02 0.02 68.30 0.14 67.48 0.14
Match data rectangles 0.14 0.00 0.10 0.02 0.08 0.02 0.26 0.04 0.24 0.00
Match links 0.22 0.00 0.06 0.00 0.08 0.00 0.74 0.00 0.58 0.02
Create probe list 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00
Partial match 24.04 0.06 24,78 0.04 25.86 0.00 67.28 0.10 66.64 0.12
Match strength probes 24.02 0.06 24,74 0.02 25.82 0.00 66.64 0.10 €582 0.12
Window selection 0.02 0.00 0.02 0.00 0.00 0.00 0.12 0.02 0.10 0.02
Classification and count 24.0 0.06 24,72 0.02 25.82 0.00 66.50 0.06 65.70 0.08
Match extension 326.54 0.50 11.46 0.12 18.72 0.20 202.58 0.32 204.68 0.44
Match strength probes 72.88 0.10 3.28 0.00 580 0.06 47.82 0.06 42.00 0.06
Window selection 0.08 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.10 0.00
Classification and count 72.80 0.10 3.28 0.00 5.80 0.06 47.72 0.02 41.88 0.06
Hough probes 253.32 0.38 8.16 0.12 12.84 0.12 153.76 0.22 161.98 0.36
Window selection 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.02 0.02
Hough transform 252.20 0.36 8§.10 0.12 12.78 0.12 151.86 0.16 160.34 0.28
Edge peak detection 1.08 0.02 0.06 0.00 0.06 0.00 1.76 0.00 1.54 0.02
Rectangle parameter update 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.04 0.00
Pesult presentation 24.80 0.00 12.28 0.04 16.64 0.02 14.78 0.00 14.74 0.02
Best match selection 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Image generation 24.80 0.00 12.28 0.04 16.64 0.02 14.76 0.00 14.74 0.02
Statistics
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21256 14542 12898 18584 18825
Elements on initial probe list 381 19 27 400 249
Hough probes 55 3 5 97 93
Initial_match strength probes 28 20 15 142 142
Extension mat. str. probes 60 3 5 110 97
Models remaining 2 1 1 2 1
Model! selected 10 1 5 7 8
Average match strength 0.64 0.96 0.94 0.84 0.88
Transiated to 151,240 256,256 257,255 257,255 257.255
Rotated by (degrees) 85 359 114 22 22
Table 5: Sun-3/160 Results
Data Set Sample Test Test2 Test3 Testd
User System User System User System User System User System
Total 293.42 5.96 130.48 2.06 116.96 2.56 191.38 3.38 192.38 3.20
Overhead 2.26 0.66 2.46 0.58 2.76 0.68 2.50 0.94 2.72 0.72
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Miscellaneous 1.28 0.00 1.24 0.00 1.24 0.02 1.22 0.02 1.22 0.00
Startup 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.02 0.00
Image input 0.30 0.50 0.50 0.50 1.00 0.48 0.76 0.72 0.92 0.54
Image output 0.18 0.14 0.26 0.08 0.06 0.16 0.06 0.14 0.08 0.18
Mode! input 0.48 0.02 0.46 0.00 0.46 0.00 0.46 0.02 0.48 0.00
Label connected components 14.14 0.38 14.20 0.26 14.10 0.36 14.46 0.12 14.40 0.26
Rectangles from intensity 3.60 0.14 2.36 0.02 2.44 0.04 3.12 0.04 2.90 0.08
Miscellaneous 1.28 0.02 1.12 0.00 1.22 0.02 1.26 0.00 1.08 0.00
Trace region boundary 0.28 0.02 0.20 0.00 0.18 0.00 0.14 0.02 0.26 0.04
K-curvature 0.82 0.02 0.44 0.02 0.42 0.00 0.68 0.00 0.48 0.02
K-curvature smoothing 0.78 0.02 0.26 0.00 0.42 0.02 0.50 0.00 0.56 0.00
First derivative 0.20 0.02 0.16 0.00 0.10 0.00 0.18 0.00 0.26 0.00
Zero-crossing detection 0.02 0.02 0.04 0.00 0.06 0.00 0.18 0.00 0.14 0.00
Final corner detection 0.20 0.00 0.12 0.00 0.04 0.00 0.18 0.00 0.04 0.00
Count corners 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60
Convex hull 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.04 0.00
Test for right angles 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.00
Final rectangle hypothesis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Median filter 112.50 1.20 59.86 0.42 42,64 0.46 42.64 0.34 42.72 0.54
Sobel 38.96 2.04 38.12 0.38 37.90 0.44 38.02 0.74 38.14 0.42
Initial graph match 6.10 0.06 6.06 0.02 6.38 0.20 17.02 0.30 16.80 0.14
Match data rectangles 0.08 0.00 0.06 0.00 0.04 0.00 0.14 0.02 0.12 0.00
Match links 0.10 0.00 0.04 0.00 0.04 0.00 0.30 0.00 0.26 0.00
Create probe list 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Partial match 5.92 0.06 5.96 0.02 6.30 0.20 16.58 0.28 16.42 0.14
Match strength probes 5.90 0.06 5.94 0.02 6.30 0.20 16.34 0.22 16.04 0.14
Window selection 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.02 0.02 0.00
Classification and count 5.90 0.06 5.94 0.02 6.30 0.18 16.24 0.18 16.02 0.10
Match extension 109.18 1.28 3.78 0.14 6.02 0.22 69.32 0.76 70.42 0.74
Match strength probes 17.54 0.02 0.78 0.00 1.40 0.00 11.60 0.06 10.20 0.10
Window selection 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.00
Classification and count 17.50 0.02 0.78 0.00 1.40 0.00 11,56 0.06 10.16 0.08
Hough probes 91.44 1.26 3.00 0.12 4.62 0.20 57.30 0.66 59.80 0.64
Window selection 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.00
Hough transform 90.64 1.24 2.98 0.12 460 0.20 56.40 0.64 59.00 0.62
Edge peak detection 0.76 0.02 0.02 0.00 0.02 0.00 0.82 0.00 0.78 0.02
Rectangle parameter update 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
Result presentation 6.68 0.00 3.64 0.00 4.72 0.00 4.30 0.20 4.28 0.02
Best match selection 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lmage generation 6.68 0.00 3.64 0.00 4.72 0.00 4.30 0.02 4.28 0.02
Statistics
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21256 14542 12898 18584 18825
Elements on initial probe list 381 19 27 400 249
Hough probes 55 3 5 97 93
Initial_ match strength probes 28 20 15 142 142
Extension mat. str. probes 60 3 5 110 97
Mcdels remaining 2 1 1 2 1
Model selected 10 1 5 7 8
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Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

Table 6: Sun-3/260 Results

Data Set Sample Test Test2 Test3 Testd
User System User System User System User System User System
Total 117,21 3.80 40.19 2.45 38.88 2.06 78.41 2.64 80.15 2.69
Qverhead 2.49 1.85 2.34 1.58 2.43 1.36 2.62 1.46 2.66 1.45
Miscellaneous 1.23 1.20 1.17 0.81 1.24 0.70 1.45 0.77 1.43 0.74
Startup 0.02 0.03 0.00 0.05 0.03 0.02 0.01 0.05 0.01 0.06
Image input 0.33 0.48 0.27 0.58 0.33 0.47 0.35 0.46 0.38 0.47
Image output 0.10 0.11 0.12 0.10 0.05 1.11 0.05 0.10 0.09 0.09
Model input 0.52 0.02 0.50 0.02 050 0.04 0.50 004 0.49 0.04
Label connected components 4.39 0.35 4.29 0.27 4.31 0.23 4.36 0.26 4.33 0.28
Rectangles from intensity 1.01 0.09 0.68 0.00 0.67 0.04 0.86 0.10 0.87 0.04
Miscellaneous 0.31 0.05 0.32 0.00 0.27 0.02 0.33 0.05 0.32 0.02
Trace region boundary 0.06 0.01 0.04 0.00 0.04 0.01 0.04 0.00 0.03 0 00
K-curvature 0.21 0.00 0.05 0.00 0.11 0.00 0.08 0.00 0.06 0.00
K-curvature smoothing 0.22 0.00 0.16 0.00 0.15 0.00 0.21 0.01 0.22 0.00
First derivative 0.12 0.00 0.09 0.00 0.06 0.00 0.14 0.00 0.08 0.00
Zero-crossing detection 0.04 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.04 0.90
Final corner detection 0.04 0.01 0.01 0.00 0.03 0.00 0.02 0.02 0.06 0.00
Count corners 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Convex hull 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Test for right angles 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
Final rectangle hypothesis 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
Median filter 30.33 0.20 14.47 0.17 11.14 0.16 11.16 0.14 11.15 0.19
Sobel 11.21 0.95 11.26 0.17 1117 0.10 11.11 0.30 11.15 0.30
Initial graph match 3.41 0.01 3.36 0.10 3.53 0.01 10.01 0.09 9.83 0.11
Match data rectangles 0.03 0.00 0.00 0.03 0.02 0.00 0.05 0.01 0.04 0.02
Match links 0.07 0.00 0.01 0.01 0.02 0.00 0.22 0.01 0.18 0.00
Create probe list 0.03 0.00 0.02 0.00 7t 0.00 0.12 0.00 0.12 0.01
Partial match 3.28 0.01 3.33 0.06 +.48 1.01 9.62 0.07 9.49 0.08
Match strength probes 3.27 0.10 3.33 0.60 3.- J.01 9.44 0.07 9.30 0.08
Window selection 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.04 0.01
Classification and count 3.15 0.00 3.23 0.06 3.38 0.01 8.85 0.05 8.65 0.02
Match extension 60.98 0.26 2.06 0.12 3.35 0.08 36.18 0.23 38.10 0.26
Match strength probes 9.89 0.02 0.45 0.00 0.79 0.00 €.63 0.02 6.06 0.02
Window selection 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00
Classification and count 9.60 0.00 0.44 0.00 0.78 0.00 6.12 0.00 5.56 0.02
Hough probes 50.99 0.21 1.61 0.12 2.56 0.08 29.32 0.20 31.77 0.22
Window selection 0.03 0.00 0.00 0.00 0.01 0.00 0.09 0.01 0.07 0.00
Hough transform 50.65 0.12 1.60 0.11 2.54 0.07 28.86 0.08 31.32 0.12
Eggegeak detection 0.15 0.00 0.01 0.00 0.01 0.00 0.24 0.02 0.21 0.00
Rectangle parameter update 0.03 0.01 0.00 0.00 0.00 0.00 0.03 0.01 0.06 0.00
Result presentation 3.37 0.01 1.67 0.00 2.24 0.00 2.07 0.00 2.02 0.00
Best match selection 0.06 0.00 0.02 0.00 0.02 0.00 0.10 0.00 0.04 0.00
Image generation 3.31 0.01 1.65 0.00 2.22 0.00 1.97 0.00 1.98 0.00

Statistics
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Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21254 14531 12892 18579 18822
Elements on initial probe list 381 19 27 389 248
Hough probes 55 3 5 93 92
Initial match strength probes 28 20 15 142 142
Extension mat. str. probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Mode! selected 10 1 5 7 8
Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

Table 7: Sun-4/260 Results

Alliant FX-80 Solution

The Alliant FX-80 consists of up to eight computational elements and up to twelve /O processors that
share a physical memory through a sophisticated combination of caches, busses and an interconnection
network. The computational elements communicate with the shared memory via the interconnection
network which links them to a pair of special purpose caches that in turn access the memory over a bus
that is shared with the 1/O processor caches. The FX-80 differs from the older FX-8 primarily in that
the computational elements are significantly faster.

Alliant was able to implement the benchmark on the FX-80 in roughly one programmer-week. The
programmer who built the implementation had no experience in vision and, in many cases, did not even
bother to learn how the benchmark code works. The implementation was done by rewriting the system
dependent section to use the available graphics hardware, compiling the code with Alliant's vectorizing
and globally optimizing C compiler, using a profiling tool to determine the portions of the code that
used the greatest percentage of CPU time, inserting compiler directives in the form of comments to
break implicit dependencies in four sections of the benchmark, and recompiling the new version of the
code. Alliant provided results for five configurations of the FX-80, with 1, 2, 4, 6, and 8
computational elements. In order to save space, only two of the configurations are represented here.
Table 8 shows the execution times for a single FX-80 computational element, and Table 9 shows the
results for an FX-80 with eight elements. Another point that was noted by Alliant is that the C
compiler is a new product and does not yet provide as great a degree of optimization as their FORTRAN
compiler (a difference of up to 50% in some cases). They expect to see significantly better
performance with later releases of the product.

Data Set Sample Test Test2 Test3 Testd
User System User System User System User System User System
Total 204.858 2.531102.700 1.861 93.311 1.828136.7593.049139.130 3.032
Overhead 7.968 0.776  7.9250.777 7.8970.775 7.9000.764 7.8950.763
Miscellaneous 0.627 0.030 0.5850.033 0.5590.033 0.554 0.030 0.554 0.031
Startup 0.0300.031 0.0290.033 0.0290.031 0.029 0.032 0.029 0.029
Image input 5.692 0.515 5.691 0.051 5.691 0.505 5.697 0.509 5.6900.504
Image output 1.0390.175 1.0390.179 1.0380.183 1.0390.171 1.0400.177
Model input 0.5800.021 0.058 0.017 0.5800.018 0.5800.017 0.5800.019
Label connected components 16.917 0.268 16.830 0.258 16.800 0.253 16.948 0.247 16 930 0.259
Rectangles from intensity 2.7600.590 1.7910.267 1.8740.252 2.3120.681 2.286 0.643
Miscellaneous 1.0050.231 0.928 0.097 0.931 0.094 0.986 0.255 0.983 0.239
Trace region boundary 0.3120.078 0.1720.021 0.183 0.019 0.2550.062 0.221 0.054
K-curvature 0.592 0.037 0.287 0.017 0.308 0.017 0.438 0.045 0.432 0.045
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K-curvature smoothing 0.3620.037 0.1760.018 0.188 0.017 0.269 0.045 0.264 0.044
First derivative 0.158 0.037 0.077 0.017 0.0820.016 0.1190.045 0.117 0.043
Zero-crossing detection 0.170 0.037 0.0760.017 0.0990.017 0.1350.045 0.133 0.043
Final corner detection 0.1350.042 0.0600.022 0.0690.022 0.103 0.051 0.101 0.049
Count corners 0.006 0.037 0.0030.017 00020.017 0.0070.044 0.0060.042
Convex huli 0.013 0.026 0.0060.017 0.0060.017 0.0150.042 0.0150.040
Test for right angles 0.006 0.013 0.0050.011 0.004 0.008 0.0090.022 0.008 0.021
Final rectangle hypothesis 0.003 0.013 0.003 0.011 0.002 0.009 0.006 0.022 0.005 0.021
Median filter 77.294 0.170 43.6520.160 31.886 0.163 31.9190.154 31.8800.166
Sobe! 26.147 0.001 26.079 0.001 26.063 0.001 26.128 0.001 26.129 0.001
Initial graph match 2.458 0.088 2.397 0.063 2.5690.055 7.1170.368 7.0110.373
Match data rectangles 0.067 0.023 0.0510.012 0.0460.014 0.129 0.047 0.111 0.041
Match links 0.067 0.002 0.024 0.004 0.022 0.004 0.2620.013 0.214 0.023
Create probe list 0.002 0.001 0.0020.001 0.0020.001 0.0050.001 0.006 0.003
Partial match 2.321 0.062 2.3200.046 2.4990.036 6.722 0.307 6.6800.307
Match strength probes 2.305 0.045 2.303 0.032 2.4860.024 6.5020.228 6.429 0.229
Window selection 0.009 0.032 0.0030.011 0.0020.008 0.0200.076 0.0200.077
Classification and count 2.2990.015 2.298 0011 2.4820.008 6.4710.076 6.397 0076 |
Match extension 68.025 0.385 2,149 0.083 3.817 0.091 42.243 0.600 44.806 0.584
Maitch strength probes 7.1380.096 0.3110.005 0.5680.008 4.6000.168 4.2160.155
Window selection 0.009 0.032 0.0000.002 0.0010.003 0.15 0.056 0.014 0.052
Classification and count 7.1250.032 0.3100.002 0.566 0.003 4.576 0.056 4.193 0.052
Hough probes 60.754 0.202 1.833 0.068 3.241 0.071 37.3300.301 40.3200.312
Window selection 0.008 0.030 0.001 0.002 0.001 0.003 0.014 0.051 0.014 0.051
Hough transform 60.259 0.082 1.806 0.061 3.210 0.061 36.650 0.097 39.604 0.110
Edge peak detection 0.474 0.031 0.026 0.002 0.0300.003 0.642 0.050 0.6810.050
Rectangle parameter update 0.008 0.030 0.0000.002 0.0010.003 0.0150.051 0.014 0.051
Result presentation 3.2690.002 1.8600.002 2.3880.002 2.1770.002 2.174 0.002
Best match selection 0.003 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.002 0.001
Image generation 3.266 0.001 1.8590.001 2.3870.001 2.1740.001 2.172 0.001
Statistics
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21266 14542 12888 18572 18813
Elements on initial probe list 374 19 27 389 248
Hough probes 55 3 5 93 92
Initial match strength probes 28 20 15 142 142
Extension mat. str. probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Model selected 10 1 5 7 8
Average match strength 0.65 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by 85 359 114 22 22
Table 8: Alliant FX-80 Single Processor Resuits
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Data Set Sample Test Test2 Test3 Test4
User System User System User System User System User System
Total 57.177 2.935 31.056 2.082 30.872 2.043 50.357 3.577 50.153 3.467
Overhead 7.940 0.847 7.903 0.825 7.8970.813 7.891 0.820 7.899 0.822
Miscellaneous 0.601 0.042 0.558 0.039 0.558 0.039 0.553 0.041 0.560 0.058
Startup 0.030 0.056 0.029 0.047 0.029 0.042 0.029 0.043 0.028 0.033
Image input 5.690 0.549 5.6950.541 5.691 0.532 5.6900.542 5.690 0.536
Image output 1.0390.173 1.0400.172 1.0380.177 1.0390.173 1.0390.173
Mode! input 0.580 0.023 0.5800.021 0.5800.017 0.5800.017 0.5800.017
Labe! connected components 6.9300.295 6.8640.272 6.8490.270 6.979C.273 6.9920.272
Rectangles from intensity 2.776 0.686 1,799 0.314 1.8820.295 2.3290.785 2.309 0.751
Miscellaneous 1.0100.277 0.9310.120 0.9340.113 0.994 0.303 0.990 0.290
Trace region boundary 0.3120.084 0.1720.023 0.183 0.022 0.227 0.071 0.224 0.0863
K-curvature 0.594 0.042 0.287 0.020 0.308 0.019 0.438 0.051 0.433 0.049
K-curvature smoothing 0.364 0.04” 0.176 0.019 0.1890.019 0.2700.052 0.267 0.050
First derivative 0.1590.042 0.0770.019 0.0830.019 0.1200.051 0.1200.050
Zero-crossing detection 0.1710.049 0.077 0.020 0.1000.019 0.136 0.0591 0.135 0.050
Final corner detection 0.136 0.048 0.0600.028 0.0700.025 ©0.103 0.057 0.1300.055
Count cuiners 0.007 0.041 0.0030.019 0.0030.012 0.008 0.050 0.007 0.052
Convex hull 0.014 0.030 0.007 0.019 0.007 0.019 0.016 0.047 0.016 0.045
Test for right angles 0.006 0.016 0.0050.013 0.004 0.010 0.0100.025 0.009 0.023
Final rectangle hypothesis 0.004 0.015 0.0030.013 0.0020.010 0.0070.026 0.0050.023
Median filter 9.8000.223 5.6370.220 4.1110.212 4.1100.214 4.1090.209
Sobel 3.798 0.001 3.7890.001 3.787 0.001 3.7950.001 3.795 0.001
Initial graph match 2.4550.123 2.3990.094 2.5690.086 7.1300.485 7.014 0.459
Match data rectangles 0.068 0.048 0.052 0.028 0.048 0.033 0.1310.102 0.112 0.083
Match links 0.068 0.004 0.024 0.009 0.022 0.009 0.263 0.030 0.213 0.020
Create probe list 0.002 0.001 0.002 0.001 0.002 0.001 0.0050.001 0.006 0.004
Partial match 2.317 0.070 2.322 0.055 2.4990.043 6.7320.351 6.682 0.351
Match strength probes 2.301 0.050 2.304 0.037 2.4850.027 6.509 0.253 6.429 0.263
Window selection 0.004 0.017 0.0040.012 0.0020.009 0.0230.087 0.0250.087
Classification and count 2.294 0.017 2.2980.012 2.4820.009 6.4730.085 6.3900.087
Match extension 20.1050.455 0.7860.107 1.3760.122 15.926 0.739 15.845 0.702
Match strength probes 7.121 0.111 0.311 0.006 0.567 0.009 4.6090.195 4.2190.185
Window selection 0.010 0.037 0.001 0.002 0.001 0.003 0.0190.065 0.016 0.065
Classification and count 7.1050.037 0.3100.002 0.5650.003 4.5800.066 4.193 0.060
Hough probes 12.847 0.243 0.468 0.086 0.799 0.099 10.996 0.378 11.350 0.366
Window selection 0.008 0.033 0.001 0.002 0.0010.003 0.0140.057 0.0140.057
Hough transform 12.353 0.110 0.441 0.078 0.767 0.086 10.3150.151 10.629 0.140
Edge peak detection 0.472 0.034 0.026 0.002 0.0300.003 0.6450.057 0.6820.057
Rectangle parameter update 0.009 0.033 0.0000.002 0.0010.003 0.0130.056 0.014 0.057
Result presentation 3.2685 0.002 1.8590.002 2.3820.002 2.1780.002 2.1730.002
Best match selection 0.003 0.001 0.001 0.001 0.0010.001 0.004 0.001 0.002 0.00
Image generation 3.262 0.001 1,858 0.001 2.3810.001 2.1740.001 2.1710.001
Statistics
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21266 14542 12888 18572 18813
Elements on initial probe list 374 19 27 389 248
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Hough probes 55 3 5 93 92
Initial match strength probes 28 20 15 142 142
Extension mat. str. probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Mode! selected 10 1 5 7 8
Average match strength 0.65 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by 85 359 114 22 22

Table 9:

Alliant FX-80 Results with Eight Processors

Image Understanding Architecture

The Image Understanding Architecture (IUA) is being built by the University of Massachusetts and
Hughes Research Laboratories specifically to address the problem of supporting real-time, knowledge-
based vision. The architecture consists of three different parallel processors that are arranged in a
hierarchy that is tightly coupled by layers of dual-ported memory between the processors. The low-
level processor in the hierarchy is a bit-serial, processor-per-pixel, SIMD, associative array. The
intermediate-level processor is an MIMD array of 4096 16-bit digital signal processors that can
communicate via an interconnection network. Each intermediate-level processor shares a dual-ported
memory segment with 64 low-level processors. The high level is a multiprocessor that is designed to
support Al processing and a blackboard model of communication through a global shared memory, which
is dual-ported with a segment of the intermediate-level processor's memory. A detailed description of
the architecture can be found in [Weems, 1989].

Because the architecture is still under construction, an instruction-level simulator was used to
develop the benchmark implementation. The simulator is programmed in a combination of Forth and an
assembly language which has a syntax that is similar to Ada or Pascal. The benchmark was developed
over a period of about six months, but much of that time was spent in building basic library routines
and additional tools that were generally required for any large programming task. A 1/64th scale
version of the simulator (4096 low-level, 64 intermediate-level, and one high-level processor) runs
on a Sun workstation, and was used to develop the initial benchmark implementation. The
implementation was then transported to a full-scale IUA simulator running on a Sequeni Symmetry
multiprocessor. At the time of ihe Avon workshop, several errors remained in the full-scale
implementation, but these have since been corrected. Table 10 presents the results from the 1UA
simulations with a resolution of one instruction time (0.1 microsecond). There are several points to
note about these results. Because the processing of different steps can be overlapped in the different
processing levels, the sum of the individual step timings does not always equal the total time for a
segment of the benchmark. Some of the individual timings represent average execution times, since the
intermediate level processing takes place asynchronously and individual processes can vary in their
execution time. For example, the time for ali of the match-strength probes is difficult to estimate
since probes are created asynchronously and their processing is overlapped. However, the time for a
step such as match extension takes into account the span of time required to complete all of the
subsidiary match-strength probes. Lastly, it should be mentioned that the intermediate-level
processor was greatly underutilized by the benchmark (only 0.2% of its processors were activated),
and the high-level processor was not used at all. The low-level processor was also idle roughly 50% of
the time while awaiting requests for top-down probes from the intermediate level.
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Data Set Sample Test Test2 Test3 Test4
Total 0.0844445 0.0455559 0.0455088 0.4180890 0.3978859
Overhead 0.0139435 0.0139435 0.0139435 0.0139435 0.0139435
Miscellaneous 0.0092279 0.0092279 0.0092279 0.0092279 0.0092278
Startup 0.0038682 0.0038682 0.0038682 0.0038682 0.0038682
Image input £.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Image output 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Model input 0.0008302 0.0008302 0.0008302 0.0008302 0.0008302
Label connected components 0.0000596 0.0000596 0.0000596 0.0000596 0.0000596
Rectangles from intensity 0.0161694 0.0125489 0.0134704 0.0131378 0.0129635
Miscellaneous 0.0003227 0.0002421 0.0002010 0.0006216 0.0002421
Trace region boundary 0.0033792 0.0015472 0.0018672 0.0010912 0.0012832
K-curvature 0.0038256 0.0019936 0.0023136 0.0015376 0.00172396
K-curvature smoothing 0.0005525 0.0005525 0.0005525 0.0005525 0.0005525
First derivative 0.0003777 0.0003777 0.0003777 0.0003777 0.0003777
Zero-crossing detection 0.0000108 0.0000108 0.0000108 0.0000108 0.0000108
Final corner detection 0.0000118 0.0000118 0.0000118 0.0000118 0.0000118
Count corners 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Convex hull 0.0036694 0.0019109 0.0015290 0.0025947 0.0026463
Test for right angles 0.0006122 0.0006009 0.0005906 0.0006421 0.0006421
Final rectangle hypothesis 0.0067877 0.0087877 0.0078821 0.0067877 0.0064229
Median filter 0.0005625 0.0005625 0.0005625 0.0005625 0.0005625
Sobe! 0.0026919 0.0026919 0.0026919 0.0026919 0.0026919
Initial graph match 0.0121876 0.0076429 0.0066834 0.1124236 0.0822296
Match data rectangles 0.0029086 0.0015672 0.0013264 0.0134885 0.0106136
Match links 0.0088872 0.0056950 0.0049762 0.0985542 0.0712324
Create probe list 0.0000868 0.0001299 0.0001130 0.0009252 0.0008618
Partial match 0.0033786 0.0077033 0.0068704 0.1828976 0.1534418
Match strength probes 0.0009275 0.0011460 0.0012285 0.0025175 0.0212640
Window selection 0.0002100 0.0003000 0.0002700 0.0005700 0.0004800
Classification and count 0.0001043 0.0001490 06.0001341 0.0002831 0.0002384
Match extension 0.0300650 0.0017674 0.0024856 0.0899214 0.1277396
Match strength probes 0.0026500 0.0001146 0.0004095 0.0543250 0.0071766
Window selection 0.0006000 0.0000300 0.0000900 0.0012300 0.0016200
Classification and count 0.0002980 0.0000149 0.0000447 0.0006109 0.0008046
Hough probes 0.0068430 0.0003251 0.0005092 0.0084591 0.0109868
Window selection 0.0000675 0.0000045 0.0000090 0.0001755 0.0002385
Hough transform 0.0053010 0.0002223 0.00030386 0.0044493 0.0053477
Edge peak detection 0.0011745 0.0000783 0.0001566 0.0030537 0.0041499
Rectangle parameter update 0.0003000 0.0000200 0.0000400 0.0007800 0.0010600
Result presentation 0.0022826 0.0009452 0.0011944 0.0029768 0.0029766
Best match selection 0.0000404 0.0000403 0.0000405 0.0000406 0.0000397
Image generation 0.0022352 0.0009185 0.0011396 0.0029464 0.0029464
Statistics
Connected components 134 35 34 114 100
Right angles extracted
Rectangles detected 31 23 19 60 55

Depth pixels > threshold

Elements on initial probe list
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Hough probes 44 5 8 84 100
Initial match strength probes 24 20 15 81 80
Extension mat. str. probes 20 1 3 41 54
Models remaining 3 1 1 2 1
Model selected 10 1 5 7 8
Average match strength 0.45 0.86 0.84 0.81 0.84
Translated to 151.240 256,256 257,255 257,255 257,255
Rotated by 85 359 113 23 23

Table 10: 1Image Understanding Architecture Results

Aspex ASP

The Associative String Processor (ASP) is being built by the University of Brunel and Aspex Ltd. in
England [Lea, 1988]. It is designed as a general purpose processing array for implementation in
wafer-scale technology. The processor consists of 262,144 processors arranged as 512 strings of
512 processors each. Each processor contains a 96-bit data register and a 5-bit activity register. A
string consists of 512 processors linked by a communication network that is also tied to a data
exchanger and a vector data buffer. The vector data buffers of the strings are linked through another
data exchanger and data buffer to another communication network. One of the advantages of this
arrangement is a high degree of fault tolerance. The system can be built with 1024 VLSI devices. or
128 ULSI devices, or 32 WSI devices. Estimated power consumption is 650 watts. The processor clock
and instruction rate is 20 MHz. Architectural changes that would improve the benchmark performance
include increasing the number of processors (impioves performance on K-curvature, median filter,
and Sobel), increasing the speed of the processors and communication links (linear speedup on all
tasks), and adding a separate controller 1o each ASP substring (gives approximately an 18% increase
overall).

Because the system is still under construction, a software simulator was used to implement and execute
the benchmark. The benchmark was programmed in an extended version of Modula-2 over a period
three months bv two programmers, following a three monih period of initial study of the requirements
and development of a solution strateqgy. A Jarvis' March algorithm was substituted for the recommended
Graham Scan method on the convex hull. Table 11 lists the benchmark resuits for the ASP. Timings
were not provided for several of the steps in the model matching portion of the benchmark, possibly
because a different method was used. Startup and model input times were not listed separately, perhaps
because those operations are done outside of the simulation. The miscellaneous time under overhead
accuunis for the input and output of several intermediate images. The miscellaneous time under the
section that extracts rectangles from the intensity image accounts for the output and subsequent input
of data records for corners and rectangles. No indication was given of whether any data rearrangement
took place as part of these 1/O operations.

Data Set Sample Test Test?2 Test3 Test4
Total 0.1307200 0.0359600 0.0398100 0.1130700 0.1188200
Overhead 0.0008200 0.0008200 0.0008000 0.0008000 0.0008000
Miscellaneous 0.0002560 0.0002560 0.00025€0 0.0002560 0.0002560
Startup
Image nput 0.0000512 0.0000512 0.0000512 0.0000512 0.0000512
Image output 0.0000512 0.0000512 0.0000512 0.0000512 0.0000512
Model input
Label connected components 0.0392000 0.0228000 0.0228000 0.0348000 0.0313000
Rectangles from intensity 0.0033100 0.0029200 0.0028800 0.0031900 0.0033500
|_Miscellaneous 0.0000761 0.0000860 0.0000842 0.0000795 0.0000734
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Trace region boundary 0.0000047 0.0000047 0.0000047 0.0000047 0.0000047
K-curvature 0.0007800 0.0007800 0.0007800 0.0007800 0.0007800
K-curvature smoothinc 0.0004500 0.0004500 0.0004500 0.0004500 0.0004500
First derivative 0.0000320 0.0000320 0.0000320 0.0000320 0.0000320
Zerg-crossing ¢« :clion 0.0000045 0.0000045 0.0000045 0.0000045 0.0000045
Final corner detection 0.0000018 0.0000018 0.0000018 0.0000018 0.0000018
Count ~orners 0.0000400 0.0000380 0.0000380 0.0000530 0.0000380
Cenvex hull 0.0003300 0.0002820 0.0002820 0.0003300 0.0003300
yest for right angles 0.0008800 0.0008400 0.0008400 0.0009500 0.0009200
Final rectangle hypothesis 0.0004500 0.0003800 0.0002900 0.0007600 0.0007000
Median filter 0.0007200 0.0007200 0.0005100 0.0006100 0.0005100
Sobel 0.0006240 0.0006240 0.0006240 0.0006800 0.0006240
Initial graph match 0.0000090 0.0000090 0.0000090 0.0000080 0.0000080
Match data rectangles
Match links
Create probe list
Partial match
Match strength probes
Window selection 0.0001200 0.0001320 0.0001080 0.0005500 0N.0006400
Classification and count 0.0009500 0.0008850 0.0008650 0.0015400 0.0016000
Mztch extension 0.0835200 0.0001470 0.0001400 0.0002650 0.0002590
Match strength probes
Window selection 0.0003000 0.0000240 0.0000360 0.0009200 0.0009800
Classification and count 0.0030000 0.0004050 0.0003520 0.0047200 0.0054500
Hough probes
Window selection 0.0002880 0.0000240 0.0000360 0.0005800 0.0007300
Hough transform 0.0790000 0.0054000 0.0104000 0.0610000 0.0690000
Edge peak detection 0.0007700 0.0000640 0.0000990 0.0015400 0.0017600
Rectangle parameter update 0.0002160 0.0000090 0.0000100 0.0002340 0.0002360
Result presentation 0.0008500 0.0004400 0.0004700 0.0004700 0.0010300
Best match selection 0.0000250 0.0000150 0.0000150 0.0000280 0.0000150
Image generation 0.0007200 0.0003200 0.0003500 0.0008400 0.0009100
Statistics
Connected components 34 33 113 99
Right angles extracted 99 92 210 197
Rectangles detected 21 16 42 39
Depth pixels > threshold 14533 12891 18582 18817
Elements on initial probe list
Hough probes 3 5 97 93
Initial match strength probes 20 15 142 142
Extension mat. str. probes 3 5 110 97
Models remaining 1 1 2 1
Model selected 1 5 7 8
Average maich strength 0.96 0.83 0.84 0.87
Translated to 256,256 257,255 257,255 257,255
Rotated by 359 114 22 22

Table 11: Aspex ASP Resulls
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Sequent Symmetr, 81

The Sequent Computer Systems Symmetry 81 multiprocessor consists of multiple Intel 80386
microprocessors, running at 16.5 MHz, connected via a shared bus to a large shared memory. The
particular configuration used to obtain these results included 12 processors (one of which is reserved
by the system), each with an 80387 math coprocessor, and 96 MB of shared memory. The test system
also contained the older A-modei caches, which induce a considerably greater level of traffic on the
shared bus than the newer B-model caches. An improvement of 30 to 50 percent in the overall
performance is possible with the new caching system. Sequent was to have provided timings for a
system with the improved cache, hbut they have not yet done so. The timings presented in Table 12 were
cbtained by the benchmark deveclopers at UMass as part of their effort to ensure the portability of the
benchmark to different systems.

About a month was spent developing the parallel implementation for the Sequent. The programmer who
did the work was familiar with the benchmark, but had no previous experience with the Sequent
system. Part of the development period was spent back-porting modifications to the sequential version
of the benchmark in order to enhance its portability. The low-level tasks were directly converted to a
parallel implementation by dividing the data sets among the processors in a manner that completely
avoided write-contention. About half of the development time was spent adding the appropriate data
locking mechanisms to the model-matching portion of the benchmark, and resolving problems with
timing and race conditions. It was only possible to obtain timings for the major steps in the
benchmark, because the Sequent operating system does not provide facilities for accurately timing
individual child processes. The benchmark was run on configurations of from one to eleven processors,
with the optimum time being obtained with eight or nine processors. Additional processors resulted in
an overall reduction in performance, which was due to a combination of factors. As the data sets were
divided among more processors, the ratio of processing time to task creation overhead decreased so that
the latter came to dominate the time on some tasks. We also believe that some of the tasks reached the
saturation point of the shared bus at about eight or nine processors since one run that was observed on a
B-model cache system showed performance to improve with more processors. The table shows the
performance obtained for a single processor running the sequential version of the benchmark, to
provide a comparison baseline, and the performance on the optimum number of processors for each data
set.

Data Set Sample Test Test2 Test3 Test4
Single Eight Single Eight Sincle Nine Single Eight Singie Nine
Total 889.66 251.33 300.34 73.88 282.7177.87 562.15 174.96 578.14 139.72
Overhead 5.84 6.00 5.57 5.93 5.82 5.87 5.75 5.86 5.65 5.90
System time 3.60 9.40 2.00 5.40 2.10 6.40 2.80 7.60 2.90 8.80

Label conn. components 19.27 1268 19.34 1583 19.2916.01 19.60 16.84 19.58 16.89

Rectangles from intensity 4.18 1.45 2.62 0.92 2.74 1.92 3.42 1.42 3.38 1.89

Median filter 239.24 31.00 114.1215.25 8581 11.08 8583 11.45 85.73 11.11
Sobel 110.89 15.00 113.21 15.46 110.8014.83 110.84 1520 110.81 14.73
Initial graph match 18.52 3.08 18.53 3.76 19.90 4.35 52.53 7.21 51.63 7.17
Match data rectangles 0.17 0.04 0.11 0.03 0.09 0.03 0.26 0.13 0.22 0.06
Match links 0.19 0.24 0.06 0.20 0.06 0.65 0.74 0.29 0.59 0.78
Create probe list 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Partial match 18.15 280 18.35 3.52 19.74 3.66 51.52 6.78 50.81 6.32
Match extension 470.90 161.34 16.16 5.97 24.08 9.38 271.07 103.99 288.21 69.10
Result presentation 2082 20.78 10.8010.76 14.47 14.43 13.11 12,99 13.09 12.93

Table 12: Sequent Symmetry 81 Results
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Warp

The CMU Warp is a systolic array consisting of ten high speed floating point units in a linear
configuration [Kung, 1984]. Processing in the Warp is directed by a host processor, such as the
Sun-3/60 workstation that was used in executing the benchmark. The benchmark implementation was
programmed by one person in two weeks, using a combination of the original C implementation and
subroutines written in Apply and W2. The objective of the implementation was to obtain the best
overall time, rather than the best time for each task. While it would seem that the latter guarantees
the former, consider that the Warp and its host can work in paraliel on different portions of a problem.
Thus, even though the Warp could perform a step in one second that requires four seconds on the host, it
is better to let the host do the processing if it would otherwise sit idle while the Warp is computing.
Thus the Warp implementation of the benchmark exploits both the tightly-coupled paralielism of the
Warp array, and the loosely-coupled task-level parallelism present in the benchmark.

Table 13 lists the results for the Warp. Timings were not provided for a few of the steps, but the totals
include all of the processing time. The Miscellaneous category under Overhead is the time required for
downloading code to the Warp array at various stages of the processing. A figure ior ihe total system
time was provided, rather than a breakdown of system time by task. The overall Total includes the
system time, which is listed on the line below the Total. Note that sums of the times for the individual
steps will not equal the Total time because of the task-level parallelism that was used.

Data Set Sample Test Test2 Test3 Test4
Total 43.60 20.30 22.30 58.10 55.30
System 3.00 2.30 2.50 4.30 4.90
Overhead
Miscellaneous 3.56 2.24 2.30 5.52 7.30
Startup 5.76 6.04 5.96 5.88 6.00
Image input 3.52 3.72 5.40 5.34 5.34
Image output
Model input 1.30 1.18 1.02 1.08 1.06
Label connected components 3.98 4.04 4.60 4.54 4.56

Rectangles from intensity

Miscellaneous

Trace region boundary

K-curvature 3.14 2.24 2.20 2.272 2.54
K-curvature smoothing 1.38 0.64 0.78 0.98 0.90
First derivative 0.42 0.24 0.28 0.34 0.40
Zero-crossing detection 0.32 0.06 0.12 0.14 0.22
Final corner detection 0.16 0.10 0.12 0.22 0.20
Count corners . 0.02 0.02 0.04 0.06 0.06
Convex hull 0.02 0.00 0.02 0.08 0.06
| _Test for right angles 0.00 0.00 0.02 0.32 0.02
Final rectangle hypotf~sis 0.04 0.00 0.02 0.02 0.04
Median filter 10.70 8.70 1.38 1.40 2.00
Sobel 0.48 0.48 0.72 0.94 0.92
Initial graph match 0.42 0.24 0.22 1.22 1.38
Match data rectangles 0.20 0.16 0.16 0.40 0.68
Match links 0.22 0.08 0.06 0.82 0.70
Create probe list
Partial match
Match strength probes
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Window selection

Classification and count

Match extension 24.80 3.64 4.58 38.60 41.20
Match strength probes 9.10 2.64 2.86 13.60 13.50
Window selection 0.02 0.02 0.02 0.24 0.18
Classification and count 9.00 2.56 2.82 13.20 13.10

Hough probes 15.30 0.96 1.68 23.30 25.80
Window selection 0.02 0.00 0.02 0.12 0.06
Hough transform 12.80 0.88 1.44 19.30 20.00
Edge peak detection 2.38 0.08 0.22 3.80 5.58
Rectangle parameter update 0.02 0.00 0.00 0.00 0.08

Result presentation 2.60 2.26 2.52 2.24 2.26
Best match selection 0.02 0.00 0.00 0.02 0.02
image generation 2.54 2.20 2.46 2.16 2.18

Statistics

Total match strength probes 91 23 20 247 239

Hough probes 58 3 5 87 95

Table 13: Results for the Warp

Connection Machine

The Thinking Machines Connection Machine model CM-2 is a data-parallel array of bit-serial
processors that are linked by an N-dimensional hypercute router network [Hillis, 1986]. In addition,
for every 32 of the bit-serial processors, a 32-bit floating-point coprocessor is provided. Connectior
Machines are available in configurations of 8192, 16384, 32768, and 65536 processing elements.
Results were provided for direct execution on the three smaller configurations, and extrapolated to the
largest configuration. The development team at Thinking Machines spent about three programmer
months converting the low-level portion of the benchmark into 2600 lines of “LISP, which is a data-
parallel extension to Common LISP. There was not enough time to implement the intermediate and top-
down processing portions of the benchmark before the workshop, and other projects have taken
priority over completing the benchmark since then. However, there was also some concern as to
whether the Connection Machine would be the best vehicle for implementing the other portions, since
they are more concerned with task parallelism than data parallelism. It was suggested that if the model
data base included several thousand models to be matched, then an appropriate method might be found to
take advantage of the Connection Machine's capabilities.

Table 14 summarizes the results for the Connection Machine on the low-ievel portion of the
benchmark, with times rounded to two significant digits (as provided by Thinking Machines). A 32K-
processor CM-2 with a Data Vauit disk system and a Sun-4 host processor was used to obtain the
results. The results that were supplied were for only one data set, and did not indicate which one was
used. It is interesting to note that several of the tasks saw little speedup with the larger configurations
of the Connection Machine. Those tasks involved a collection of contour values that had been mapped into
16K virtual processors, which are enough to operate on all of the contour points in parallel, and so
there was no advantage in using more physical processors than virtual processors. It was suggested
that the Connection Machine might thus be used to process the contours for several images at once in
order to make use of the larger number of processors. On the other hand, for those tasks that are pixel
oriented, 256K virtual processors were used and therefore a proportional speedup can be observed as
the number of processors increases.
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Configuration 8K 16K 32K 64K
Total (low level tasks only) 1.26 0.91 0.71 0.63
Overhead
Miscellaneous
Startup 0.10 0.10 0.10 0.1¢
Image input 0.155 0.155 0.155 0.155
Image output
Modesl input
Label connected components 0.34 0.21 0.14 0.10

Rectangles from intensity

Miscellaneous

Trace region boundary 0.44 0.30 0.23 0.17
K-curvature 0.019 0.019 0.018 0.018
K-curvature smoothing 0.0056 0.0055 0.0062 0.0055
First derivative 0.00038 0.00037 0.00037 0.00037
Zero-crossing detection 0.00021 0.00020 0.00019 0.00019
Final corner detection 0.0058 0.0053 0.0053 0.0053
Count corners 0.018 0.016 0.016 0.016
Convex hull 0.041 0.038 0.039 0.038

Test for right angles

Final rectangle hypothesis

Median filter 0.082 0.041 0.025 0.015

Sobe! 0.052 0.026 0.014 0.008

Table 14: Results for the Connection Machine on the Low-Level Portion

Intel iPSC-2

The Intel Scientific Computers iPSC-2 is a distributed memory multiprocessor that consists of up to
128 Intel 80386 microprocessors that are linked by a virtual cut-through routing network which
simulates point-to-point communications. Each of the microprocessors can have up to 8 MB of local
memory, and an 80387 arithmetic coprocessor. The benchmark implementation for the iPSC-2 was
developed by the University of lilinois at Urbana-Champaign using C with a library that supports
multiprocessing. The group had only enough time to implement the median filter and Sobel steps of the
low-level depth image processing. However, they did run those portions on five different machine
configurations, with 1, 2, 4, 8, and 16 processors, and on four of the five data sets. Table 15 presents
their results, which are divided into user time and system time (including data and program load time,
and output time).

Configuration 1 2 4 8 16
User System User System User System User System User System
Median Fiiter
Sample 176.47 0.00 87.93 11.52 43.46 11.23 22.27 3.1 11.14 3.82
Test 75.45 0.00 37.72 10.88 18.99 10.84 9.66 3.15 4.84 3.87
Test2 60.84 0.00 30.36 11.48 15.25 11.45 7.63 3.73 3.81 4.19
Test3 60.83 0.00 30.36 11.12 15.25 11.23 7.63 3.49 3.82 4.03
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Sobel
Sample 78.63 0.00 39.32 3.53 19.68 3.00 9.84 2.37 4.92 2.91
Test 80.82 0.00 40.42 3.47 20.25 2.89 10.15 2.43 5.10 2.82
Test2 80.82 0.00 40.42 1.46 20.25 1.99 10.15 1.87 5.10 2.50
Test3 78.63 0.00 39.31 2.62 19.68 2.51 9.84 2.17 4.92 2.69

Table 15: iPSC-2 Results for Median Filter and Sobel Steps

Comparative Performance Summary

As mentioned above, the direct comparison of raw timings is not especially useful. We have attempted
to provide as much information about each benchmark implementation as is necessary for others to
make informed and intelligent comparisons of the results. For example, a valid comparison of
architectural features should take into account the technology, instruction rate, and scalability of the
processors that were actually used to obtain the resuits. On the other hand, a comparison that seeks to
establish the currently available machine with the best cost to performance ratio should look at the
timings with respect to both the programming effort required and the price of the hardware. The
authors hope to develop and publish some direct comparisons of architectural features, once a few more
implementations are added to the sample and a reasonably broad set of scaling functions is established.

In the meantime, one interesting comparison that can be immediately drawn from the data, which
requires no scaling for technology, is the relative amount of processing time that each architecture
expends on each portion of the benchmark. This function, which is just the percentage of the total time
taken for each step, provides an indication of those tasks that each architecture excels at and those that
it struggles with. Tables 16 through 20 compare the efforts for the different architectures on each of
the major benchmark steps, for the five data sets. It should be noted that the data sets Test and Test2
require very little model matching effort since they involve very simple modeis. The other three data
sets involve more complex models, which is easily seen in Tables 16, 19, and 20. Only the complete
implementations are listed, since a total time for the benchmark is required to compute the values in
the tables. Blanks in the tables represent information that was missing from the reports by the
different groups.

Architecture Sun-3 Alliant IUA ASP Sequent warp
QOverhead 0.6 14.6 16.5 0.6 2.3
Label connected components 3.5 12.0 0.1 30.0 4.9 9.1
Rectangles from intensity 0.8 5.8 19.1 2.5 0.6
Median filter 30.9 16.8 0.7 0.6 11.9 24.5
Sobel 17.0 6.3 3.2 0.5 5.8 1.1
Initial graph maich 3.1 4.3 14.4 0.0 1.2 1.0
Match data rectangles 0.0 0.2 3.5 0.0 0.5
Match links 0.0 0.1 10.5 0.1 0.5
Create probe list 0.0 0.0 0.1 0.0
Partial match 3.0 4.0 4.0 1.1
Match extension 40.9 34.2 35.6 63.9 61.9 56.9
Result presentation 3.1 5.4 2.7 0.7 8.0 6.0

Table 16: Distribution of Processing Time for Data Set Sample
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Architecture Sun-3 Alliant IUA ASP Sequent Warp
Overhead 1.5 26.4 30.9 2.3 3.1
Label connected components 8.2 28.9 0.1 63.4 9.4 19.9
Rectangles from intensity 1.2 6.4 27.5 8.1 0.9
Median filter 35.2 17.7 1.2 0.2 34.6 42.9
Sobel 39.4 11.4 5.9 1.7 34.4 2.4
Initial graph _match 7.4 7.5 16.8 0.0 6.0 1.2
Match data rectangles 0.0 0.2 3.4 0.0 0.8
Match links 0.0 0.1 12.5 0.1 0.4
Create probe list 0.0 0.0 0.3 0.0
Partial match 7.3 7.2 16.9 5.8
Match extension 3.4 2.7 3.9 0.4 5.9 17
Result presentation 3.6 5.6 2.1 1.2 5.8 11
Table 17: Distribution of Processing Time for Data Set Tesi
Architecture Sun-3 Alliant \UA ASP Sequent warp
Overhead 1.7 26.5 30.6 2.0 3.2
Label connected components 8.6 21.6 0.1 57.3 9.8 20.6
Rectangles from intensity 1.3 6.6 29.6 7.2 1.3
Median filter 28.2 13.1 1.2 1.3 26.9 6.2
Sobel 41.3 11.5 5.9 1.6 34.8 3.2
Initial graph match 7.9 8.1 14.7 0.0 6.7 1.0
Match data rectangles 0.0 0.2 2.9 0.0 0.7
Match links 0.0 0.1 10.9 0.3 3.7
Create probe list 0.0 0.0 0.2 0.0
Partial match 7.9 7.7 15.1 6.4
Match extension 5.7 4.6 5.5 0.4 9.2 20.5
Result presentation 5.1 7.2 2.6 1.1 7.9 11.3
Table 18: Distribution of Processing Time for Data Set Test2
Architecture Sun-3 Alliant IUA ASP Sequent War
Overhead 1.0 16.2 3.3 0.7 1.6
Label connected components 5.1 13.4 0.0 30.8 4.9 7.8
Rectangles from intensity 1.0 5.8 3.1 2.8 0.7
Median filter 16.5 8.0 0.1 0.5 13.2 2.4
Sobel 24.5 7.0 0.6 0.6 17.1 1.6
Initial graph _match 12.4 14 .1 26.9 0.0 8.1 2.1
Match data rectangles 0.1 0.4 3.2 0.1 0.7
Match links 0.1 0.5 23.6 0.1 1.4
Create probe list 0.0 0.0 0.2 0.0
Partial match 12.2 13.1 43.7 58.3
Match extension 36.8 30.9 21.5 0.2 50.9 66.4
Result presentation 2.7 4.0 0.7 0.4 3.5 3.9

Table 19: Distribution of Processing Time for Data Set Test3
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Architecture Sun-3 Alliant JUA ASP Sequent warp
Overhead 1.0 16.3 3.5 0.7 1.6
Label connected components 5.1 13.5 0.0 26.3 5.1 8.2
Rectangles from intensity 1.0 5.7 3.3 2.8 0.7
Median filter 16.4 8.1 0.1 0.4 13.5 3.6
Sobel 24.5 7.1 0.7 0.5 17.5 1.7
Initial graph match 12.2 13.9 20.7 0.0 8.2 2.5
Match data rectangles 0.0 0.4 2.7 0.0 1.2
Match links 0.1 0.4 17.9 0.2 1.3
Create probe list 0.0 0.0 0.2 0.0
Partial match 12.1 13.1 38.6 8.0
Match extension 37.1 30.9 32.1 0.2 49.8 74.5
Result presentation 2.7 4.1 0.7 0.9 3.6 4.1

Table 20: Distribution of Processing Time for Data Set Test4

Recommendations for Future Benchmarks

At the conclusion of the Avon workshop, a panel session was held to discuss the benchmark, ways it
could be improved, and future benchmark efforts. The general conclusion of the participants was that
the benchmark is a significant improvement over past efforts, but that there is still work to be done.

One of the major complaints was the sheer size and complexity of the benchmark solution. The sample
solutions are a considerable help in this regard, but a great deal of work is still required to transport
them to parallel architectures. Several people expressed the opinion that a FORTRAN version should be
made available so that the benchmark would be taken up by the traditional supercomputing community.
It was pointed out that most groups don't have the time or resources to implement such a complex
benchmark, and that it would be almost impossible to tune it for optimum performance as is done with
smaller benchmarks. A counter-argument was voiced that most vision applications are not highly
tuned, and that the benchmark might therefore give a more realistic indication of the performance that
could be expected. Suggestions for reducing the size of the benchmark included removing one of the top-
down probes (although there was no consensus on which one should be removed), and simplification of
the graph matching code through increased generality.

On the other hand, several people complained that the benchmark task was too small. The groups that
had benchmarked data-parallel systems all indicated that they would like to see data sets involving
thousands of models so that they could exploit more data parallelism, rather than being forced into a
task parallel model. Of course, those who had benchmarked multi-tasking systems took the opposite
view. [t was then suggested that an interesting variation on the benchmark would be to provide a range
of data sets with model-bases ranging through several orders of magnitude. Such data sets would
provide another dimension to the performance analysis, and thus some insight into the range of
applications for which an architecture is appropriate. Beyond simply increasing the size of the
model-base, several of the vision researchers expressed a desire to see a broader range of vision tasks
in the benchmark. For example, motion analysis over a succession of frames would test an
architecture's ability to deal with real-time image input and would help to identify those with a special
ability to pipeline the stages of an interpretation. However, there was an immediate outcry from the
implementors that the benchmark is already too complex. It was then suggested that an optional second
level of the benchmark could be specified that would be based on the basic task, but extended to include
image sequences and motion processing.
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An important observation was made that the complexity of the benchmark was not the issue, but the cost
of implementation. It was suggested that the benchmark might be more palatable if it was reorganized
to be built out of a standard set of general purpose vision subroutines. Even though a group might still
have to implement all of those routines, they would then at least have a library that could be used for
other applications, over which they could amortize the cost. The benchmark specification would then be
a framework for applying the library to solve a problem, and could involve separate tests for
evaluating the performance and accuracy of the individual subroutines.

Part of the discussion focussed on the fact that the benchmark does not truly address high-level
processing. However, as the benchmark designers were quick to point out, there is no consensus among
the vision research community as to what constitutes high-level processing. Until agreement can be
reached on what types of processing are essential at that level, it will be pointless to try to design a
benchmark that includes the high level. It was also noted that the current top-down direction of low-
level processing by the benchmark has some of the flavor of the high-level control of intermediate- and
low-level processing which many people feel is necessary. In the end, it was decided that the
community is not yet ready to define high-level processing to the degree necessary to build a
benchmark around it.

Another point was that a standard reporting form should be developed, and that the sequential solution
should output its results to match that form. Although the benchmark specification included a section
on reporting requirements, the sequential solution did not precisely conform to it (partly because
many of the reporting requirements were for aspects of the implementation that went beyond the
timings and statistics that were to be output). In fact, most of the groups followed the exampie of the
reporting format for the sequential solution, rather than what was requested in the specification. It
was aiso noted that because the benchmark aliows alternate methods to be used whenever dictated by
architectural considerations, the reporting format can not be made completely rigid.

The conclusion of the panel session was to let the benchmark stand as specified for some period of time,
in order to allow more groups to complete their implementations. Then a new version of the benchmark
should be developed with the following features: It should be a reorganization of the current problem
into a library of useful subroutines and an application framework. A set of individual problems should
be developed to test each of the subroutines. A broader range of data sets should be provided, with the
size of the model-base scaling over several orders of magnitude, and perhaps a set of images of different
sizes. The graph matching code should be simplified and made more general purpose. A standard
reporting format should be provided, with the sample solutions generating as much of the information
as possible. Lastly a second level of the benchmark might be specified that extends the current problem
to a sequence of images with motion analysis. The second level would be an optional exercise that could
be built on top of the current problem to demonstrate specific real-time capabilities of certain
architectures.

Conclusions

The DARPA Integrated Image Understanding Benchmark is another step in the direction of providing a
standard exercise for testing and demonstrating the performance of parallel architectures on a
vision-like task. While not perfect, it is a significant improvement over previous efforts in that it
tests performance on a wide variety of operations within the unifying framework of an overall task.
The benchmark also goes a long way toward eliminating programmer knowledge and cleverness as a
factor in the performance results, while providing sufficient flexibility to allow implementors to take
advantage of special architectural features.

Complete implementations have only been developed for a handful of architectures to date, but it is
hoped that others will be added to the sample. In the meantime, it is possible to draw a few general
conclusions from the data that has been gathered. It is clear that a tremendous speedup is possible for
the data parallel portions of the interpretation task. However, every one of the architectures in this
sample devoted the greatest percentage of its overall time to the model matching portion of the
benchmark on those data sets that involved complex models. One conclusion might be that this portion
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of the task simply doesn't permit the exploitation of much parallelism. However, when the model
matching step is viewed at an abstract level, it appears to be quite rich with potential parallelism, but
in the form of task parallel direction of limited data paraliel processing. While this style of processing
can be sidestepped by increasing the size of the model-base so that the entire task becomes data parallel
in nature, the inclusion of true high-level processing will force us back to dealing with this processing
model. Thus, one potential area for research that the benchmark points out is the development of
architectures, hardware and programming models to support task parallelism which can direct data
parallel processing in a tightly coupled manner.
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Abstract
E fficient, real time execution of computer vision algorithms usually requires special
purpose hardware. @ We present two types of processor architectures for performing

localized operations on a single image and for performing shift and correlate type
operations on multiple images. Efficient architecture designs should consider issues such
as 1/O bandwidth and practical VLSI limitations. CCD (charge-coupled device) technology
has many desirable characteristics for computer vision processors. In particular,
proposed CCD implementations of an edge detector, a reconstruction processor and a shift
and correlate type processor will also be presented.

i. Introduction

Typical image processing tasks are very demanding for general purpose computers. Therefore, there is a
need for special purpose processors especially for real time vision applications. The design of efficient
image signal processors requires careful consideration of both the computational and /O communication
requirements. The goal of this paper is to present practical VLSl processor architectures that have
particularly efficient CCD (charge-coupled device) implementations. This paper is organized as follows:
First the processor architectures are presented. A review of CCD technology is followed by a
presentation of the proposed CCD structures that implements an edge detector, a reconstruction
processor, and a shift and correlate type processor.

2, VLSI Processor Architectures

Many vision algorithms consist of calculations or operations performed on spatially localized
neighborhoods.  Furthermore, most of the execution time is spent accessing pixel data values and not
performing actual computations. Special purpose processors exploit the parallelism and regularity of the
algorithm to achieve real time performance.

P 1, Pipelin

In the design of a VLSI processor architecture, it is important to consider the degree of parallelism in
processors and I/O connectivity, so that the computation speed and I/O capability are comparable. With
an integrated n xn CCD imager, it is possible to provide n x n parallel processing elements, n parallel
processing elements, or a single, serial processing element. While a fully parallel, n x n processor
architecture potentially has the highest computational speed, it is typically I/O bandwidth limited since
present VLSI technology cannot provide n x m parallel I/O paths. A single, serial processor is the
simplest to implement. However, it typically requires large internal data storage capabilities and must
operate at very high internal clock frequencies. A VLSI architecture using n parallel processing element
with n parallel I/O paths provides a balance between computation speed and 1/O bandwidth (see figure
1). By pipelining several stages of n parallel processing elements, a large variety of computations can be
performed on a single image. As each column of pixels is serially shifted together, local interactions
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between neighboring column elements can be directly performed in parallel with each shift.  Local
interactions between neighboring row elements can be similarly performed by using time delay elements.
Algorithms ".at can be decomposed into simple, localized operations can be efficiently realized in a
parallel, pipelined architecture.  This type of architecture is also particularly well suited for charge
domain computations with CCDs. Furthermore, with an integrated CCD imager the n parallel processors
can be placed ouiside of the imaging area so that the fill factor (amount of area devoted to photon
collection) is not sacrificed.
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Figure 1. A schematic of the parallel, pipelined processor is shown. Rectangles represent pixel
data values. Data is input and output in parallel as successive columns and is pipelined throush
the processor. The first block of local processing elements (PE) computes the interactions
between neighboring column elements. The second block of local processing elements (PE)
computes the interactions between neighboring row elements by using delays.

Parallel, Shifted Architecture

A different type of processor architecture is required for algorithms that require multiple images. In
particular, we consider motion and stereo algorithms that use local patchwise, shift and correlate
operations. For motion analysis, the patchwise correlation of sequential images for a 2-D range of shifts
is computed. For stereo, the patchwise correlation of left and right images is computed for only a 1-D
range of shifts. Motion is seen to be the 2-D generalization of stereo. Data [/O is one of the most
important constraints for processor architecture. If the image data are input as serial scan lines and the
algorithm is to compute the correlation of s possible shifts, a processor architecture that utilizes s
parallel processing clements as shown in figure 2 is able to efficiently manage data flow. Data in the
processor flows smoothly to each processing element and does not need to by recycled after passing
through the entire processor.
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Figure 2. A schematic of the parallel, shifted architecture for shift and correlate type
computations is shown. Two images a and b are input as serial scan lines. Pixel values of image
a are directly input to each processing element (PE). Pixel values of image b are input through a
shift register so that each PE has a different pixel value of image b. The s PEs (each
corresponding to one of the range of s possible shifts) compute in parallel the correlation of a
pair of pixels form image a and b. As the next pixel of image b enters the shift register, the
nex: pixel of image a is also input. Notice that each of the s PEs corresponds to a constant shift
value. The computed correlations are passed into a SIPO (serial-in parallel-out) register. The
SIPO register passes the computed correlations into a processor such as the binomial convolver
that computes the average correlation over a neighborhood. The patchwise correlation of a pixel
for a given shift is serially output by a PISO (parallel-in serial-out) register. The correlations
are compared by a non-maximum suppression (WTA) operation and the shift value (motion vector
or tereo depth) of maximum correlation is output at the same pixel serial input rate.

3. CCDs

CCDs operate as shift registers that store information as an analog value of charge. A CCD shift register
is essentially an analog, sampled data memory. Charge can be stored for ~30 milliseconds and clocked at
~100 MHz for typical silicon CCDs. The actual bit accuracy or dynamic range is determined by the
maximum and minimum charge values which are a function of the actual size of the device, physical noise,
and sensitivity of the output charge-to-voltage coaverter. Using typical process parameters for silicon
CCDs, 8-bit accuracy is readily achievable. A gingle CCD is capable of serving as memory by storing an
analog charge value as well as performing simple operations such as addition, subtraction, multiplication
by a constant, division by a constant, delay, and data 1/O. CCDs are particularly well suited for
pipelined or parailel architectures since they are analog shift registers and are easy to configure and
clock in parallel. In addition, CCDs are used extensively as imaging .evices. Image signal processing
and computer vision are ideal applications for CCD technology since the CCD signal processors and CCD
imager can be integrated together which potentially increases the 1/0 bandwidth be:ween the imager and
signal processors. In the past, CCDs have been effectively used for high performance signal processing
(1] as well as combined imaging and signal processing [2].
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4. CCD Implementations

At present there are many successful algorithms implemented on general purpose computers that can
perform early vision tasks, but there are few that are capable of real time performance. Possible
implementations of early vision tasks using the parallel, pipelined architecture and the parallel. shifted
architecture are presented below. By matching the algorithms with the capabilities of a CCD image
processor, the proposed implementations of the parallel, pipelined and parallel, shifted architecture are
capable of operating in real time and at the image frame rate.

Edge Detector

Edge detection is one of the most important early vision task. Edge positions contains much of the
essential cognitive information of the scene. While there are many edge detection algorithms (i.e. Sobel
operators, Canny edge detector, difference of Gaussians, etc.), the LoG (Laplacian of Gaussian) level-
crossings was chosen for its ease of implementation. The CCD implementation of this edge detection
algorithm is separated into two components, the 2-D Gaussian filter and the Laplacian operator. Once the
LoG of the image intensity has been computed, a simple comparator with an adjustable threshold can be
used to identify the level-crossings which correspond to edges in the image.

The CCD implementation of a 2-D Gaussian filter utilizes the fact that a 2-D Gaussian filter is
decomposable into a 1-D Gaussian filter in columns and a 1-D Gaussian filter in rows. Furthermore, the
CCD structure actually implements a binomial distribution which is a good approximation to a Gaussian.
(The precise shape of the low pass filter is not critical since it is used primarily to improve the
robustness of the algorithm to noise.) By combining CCD structures that perform the charge domain
operations of division by 2 and addition, a simple first order 1-D binomial coanvolution within column
elements is implemented in the charge domain by the CCD structure shown in figure 3a. The full 2-D
Gaussian could be accomplished by transposing the image and using the same processors t0 compute the
1-D binomial convolution within row elements. However, transposing an image in the charge domain
requires a full frame delay and complex hardware. A faster, more direct method of achieving a first
order, 1-D binomial convolution within row elements is to use the same division by 2 and addition
operators in conjunction with a delay element as in figure 3b. The order of the binomial distribution
which determines size and extent of the approximated Gaussian filter is increased by successive
applications of the first order binomial convolutions.

direction of

charge shifts (division by 2)
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Figure 3 Basic CCD structure for computing binomial convolution. Repeated operations increase
the order of the binomial and extent of weighted average. (a) As a column of pixel values is passed
in parallel through the CCD structure, the signal charge is divided by 2 and summed to form the
average of neighboring column elements. (b) As a row of data values is pipelined through the CCD
structure, the signal charge is divided by 2, delayed, and summed to form the average of
neighboring row elements.
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The implementation of the Laplacian operator is simply a slight variation of the 2-D Gaussian filter. The
Laplacian operator is implemented by a convolution with 2 1/8 [0 1 O] ,[1 -4 1],[0 1 0} mask
The CCD implementation computes the convolution of the positive values separately and subsequently
subtracts the negative value to realize the Laplacian operator. The basic CCD structure that performs
this operation is realized by combining the same simple charge domain operations of addition, division
by 4. and delay with a subtraction operation and is schematically described in figure 4.
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Figure 4. A CCD structure that computes the Laplacian is shown. As columns of data values are
pipelined through, the charge is divided in 4, delaved, summed, divided by 2. and finally
subtracted in order to implement a convolution with a

180 1 0] (1 4 1].[0 I 0] mask

I i r

Gaussian convolution and other low pass filters are used to suppress high frequency components.
However, lincar low pass filters also reduce the high frequency components of real information in the
image typically resulting in blurry object edges. Various nonlinear operations such as median filtering
have been used to try to reconstruct or enhance images. In particular, a variation of a surface
reconstruction algorithm used by Blake and Zisserman [3] is well suited for the parallel, pipelined
architecture. The algorithm is essentially a conditional convolution that preserves large differences and
filters small differences. In other words. a region is low pass filtered if the differences in intensity
between neighboring pixels are below some threshold. This algorithm has been analyzed as a
deterministic approxima.ion of Markov random fields by Geiger and Girosi ([4]. By combining a
thresholding element that measures local differences with the binomial convolver. the reconstruction
processor is implemented as shown in figure 5. Implementation of an independently adjustable
thresholding element introduces the ability to integrate information from different image fields such as
intensity, color, depth, motion, etc. In a real image, different fields are highly correlated (depth
discontinuities tend to occur in conjunction with intensity edges) and should influence the
reconstruction of other image fields. This reconstruction/integration processor is potentially a powerful
application for CCD image processors.
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Figure S. A CCD structure that implements a surface reconstruction algorithm is shown. The
circle and dashed lines represent a thresholding element that will prevent charge from being
summed if the difference in data values exceeds a given threshold. As a column of data values is
passed in parallel through the processor., the charge is split and is conditionally summed. The
resulting output is some weighted average of neighboring column elements dependent on local
differences. An integration processor is implemented by using an independently adjustable
thresholding element.

Stereo/Motion Processor

CCD implementation of a shift and correlate type of operation for stereo or motion utilizes the parallel,
shifted architecture. The processing elements need to compute the norm of the two input pixel values.
An absolute difference operator is usually an acceptable norm for shift and correlate algorithms.
Standard CCD input structures implement a subtraction operation when the first operand is less than the
second operand and give a zero result when the first operand is less than the second. The absolute
difference operator is implemented by summing the values from a standard CCD input structure and an
identical CCD input structvre except with the first and szcond inputs reversed.

5. Conclusion

A parallel, pipelined architecture and a parallel, shifted architecture for VLSI hardware implementation
of vision algorithms was presented. The parallel, pipelined architecture is particularly well suited to
image processing algorithms that can be decomposed into simple, localized operations. Possible CCD
implementations of an edge detector and reconstruction/integration processor were described. The
parallel, shifted architecture is well suited to shift and correlate type algorithms such as those for
stereo and motion. A CCD implementation of the correlation operator as an absolute differencing
processor was proposed. Data I/O is one of the most important constraints on a VLSI processor
architecture. The ability of CCDs to serve as memory, I/O data path, and processor makes it a very
promising technology for image processing and computer vision applications.
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ABSTRACT

Five control systems loosely corresponding to primate saccadic. vergence, pursuit, vestibulo-ocular, and head
control operate on a simulated two-eyed robot head maneuvered by a robot arm. The goal is to get some
qualitative understanding of the interaction of such reflexes under various assumptions. The simulation
is meant to be relevant to U. Rochester’s robot. Thus it incorporates kinematics of the robot head but
assumes a ~tool-coordinate” system available to robot arm commands, so that arm kinematic calculations
are unnecessary. Dynamics are not modeled, since they are handled by the commercial controllers currently
used in the Rochester robot. Even small delays render the effect of delay-free controllers unstable, but
multi-delay version of a Smith predictor can to cope with delays. If each controller acts on the predicted
system and ignores other controllers, the situation is improved but still potentially unstable if controllers with
different delays act on the same control output. The system’s performance is much improved if controllers
consider the effect of other controllers, and the resulting system is stable in the presence of a certain amount
of stochastic disturbance of control delays and inputs, and also in the presence of systematic error arising
from inaccurate plant and world models.

INTRODUCTION

Behaving, actively intelligent (mechanical or biological) systems must manage their computational and phys-
ical resources in appropriate ways in order to survive and to accomplish tasks. At Rochester we are building
an integrated actively intelligent system that incorporates abstract reasoning (planning), sensing, and acting
[Bro88). The active intelligence paradigm we shall exploit incorporates the following ideas.

1. A hierarchy of control, so that the highest cognitive levels can reason in terms of what they want done
rather than how to do it in detail. This hierarchy should extend throughout the system.

2. At the lower levels, the control hierarchy ends with visual and motor skills or reflezes. These capabilities
are cooperative but to some extent independentiy controllable. Some are always running, and they
form the building blocks on which more complex behavior is built. Examples are tracking targets to
minimize motion blur or redirecting gaze as a result of attentional shifts.

3. Part of the job of low-level visual capabilities is to present perceptual data, such as flow fields or
depth maps, to higher-level visual processes. Low-level processes can often benefit from knowledge of
self-initiated motion on the part of the sensing entity. They can often be built on the low-level control
capabilities.

We currently have a nine degree of freedom robot body-head combination controlled by a Sun computer
interfaced over a serial line to a VAL-II robot control system, and over a VME bus to the three eye motor
controllers. The visual input is processed by a pipelined image processing system. The system has been
used in several promising demonstrations of considerable complexity in depth-map creation and vergence
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([BO88.OP39]). It has also been used for some simple but effective real-time applications in tracking and
fixation.

What has been missing so far has been the cooperation of several modes of control, ar the operation of
several at once. In the work reported below, a simulation of the robot head and eyes is used to examine the
effects of different styles of interaction between certain control capabilities that we have implemented (such
as tracking) or anticipate using (such as using eye movements to compensate for head movements).

The simulation software is based on the actual robot head kinematics, and has provided a flexible tool for
investigating the interaction of different control methods and different types of control interaction.

THE MODEL OF HEAD AND IMAGING

The simulator geometry can capture all the essentials of the Rochester robot [Bro88 BR88] (including the
annoying “non-spherical” geometry of the camera pans and tilts). It allows geometric parameters to be
changed to explore the effects on error and the possibility of adaptative control. The robot arm is not
modeled: rather the model abstracts it to a single eye-support platform that can be postioned arbitrariiy in
space with six degrees of freedom: three in position, three in orientation. On the model head is a modelled
tilt capability that affects both cameras, and each camera has a modelled pan capability. The geometry
of the offsets of the various axes in these links are variable, and incorporate the geometrical complexity of
the real system. The simulated mechanism is massless; this reflects the effective behavior of our current
hardware system when viewed from its high-level control operations. The independent control of the camera
pans allows us to model modern theories of saccadic and vergence systems; heads with mechanical vergence
capability need one fewer motor but must use older models of these systems.

The camera models incorporate point projection with fixed focal length, as well as a ”foveal-peripheral”
distinction by which the location of imaged points is less certain, outside a small foveal region, depending
on the off-axis angle of the target being imaged. The target itself is a single point in 3-D space, moving
under dynamical laws. The experiments below were often carried out with the target point in orbit about an
invisible "black hole” - thus the target followed an elliptical path. In other experiments the target moved in
a straight line. In some of the experiments involving delays the target was stationary but the robot moved
in X, Y, and Z, thus creating a perceived target motion, but one due to factors under robot control.

It is assumed that the imaging system knows the distance to the target (in real life, this distance may be
derived from binocular stereo, apriori knowledge, any of a number of monocular distance cues, kinetic depth
calculations, etc.). It is assumed that, for each eye, the instantaneous retinal velocity of the target is known
(i.e. the vector difference between its position in the current image and its position in the last image). Other
than that, the system only knows the left and right image (x.y) location of the target’s image. Of course the
target’s image position and hence image velocity is perturbed by uncertainties arising from the blurriness
of peripheral vision, should the target not be foveated. There is a further provision to add uniform noise to
the target’s imaged position - this can model quantization noise, or be used to approximate process noise in
the target’s motion.

THE MODEL OF CONTROL
ZERO DELAY CONTROL

The input to the control systems is usually based on quantities that can be inferred from vision (e.g. the (x,y)
position of the target, which should be driven to (0,0), or target disparity between the two eyes which should
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be driven to 0). Some control inputs arise from the robot’s ”proprioception” {e.g. the amount the cameras
are panned or tilted from their null position), and some is from other control signals (when one control is to
null out the effects of another). The simulation has controllable output parameters corresponding to one set
of VAL-II robot control parameters (the VAL-II "tool coordinate system”) for the head: its X,Y,Z position
and A,B.C orientation. Also there is direct control over the pans (independent for left and right) and tilt
(common) of the two cameras. In every case the outputs of controls are velocity commands to the nine
degrees of freedom in the system, reflecting one simple form of our current interface to the motor controllers.

The basic control loops that manage the system are loosely inspired by the primate ‘7isual system. However,
most assumptions and technical decisions have been made either for the sake of simplicity or to mimic our
robot rather than for the sake of faithfully modelling known biological systems or optimal mechanical systems
(see the Discussion section below). Still, one of the major design goals is that the system can support more
detailed control models. Most of the loops have several parameters, such as the proportional, integral, and
derivative (PID) constants of their controllers, and their delays and latencies. Delay means the amount of
time after a commanded motion before it commences — this is often called latency in the literature. Latency
is how long it takes the command to complete: it is another time constant that indicates both how soon
another command can be accepted, or how long the command will be affecting the controlled (velocity)
variables. In all the work so far. only saccades have latency greater than unity. In the robot system the
delay correponds to how long it takes the mechanical system to respond to a motion ordered from a high
software level, and the latency reflects how long it takes to complete a command. The assumption is of
control delay, not sensor delay: that is, we assume that "sensors” (visual or robot- and eye-control motor
states read from their controllers) are available to the system immediately, without delay, and thus reflect
the true state of the world. (Our analysis and the algorithms extend to the case that the sum of control and
sensor delays is constant for any controller.)

There are five separate control systems.

1. Saccade: fast slewing of cameras to point in commanded direction. Saccades are modelled as open
loop, though in primates there are "secondary” saccades that correct errors in initial saccades. The
saccadic system tries to foveate the target and to match eye rotations to the target velocity so as to be
tracking the target as soon as the saccade is completed. Current opinion is that the saccadic system
is aware of the 3-D location of the target, not just the location of its retinal image. However, in the
implementation used for the experiments below, saccades operate with retinal locations and velocities,
not 3-D locations or distance. The left eye is dominant in the system. The saccade aims to center
the target image on the fovea of the left eye; the right eye is panned by the same amount (and of
course tilted by the same amount for mechanical reasons). Thus the saccade maintains the current
vergence angle. It is implemented as a constant-speed slewing of all three pan and tilt axes, with one
of them attaining a system constant maximum velocity. The slewing continues until the target should
be foveated (it my not be due to peripheral blurring or other noise), at which time the system is left
with eye velocities that match the perceived target motion before the saccade. The saccadic system is
characterized by its maximum velocity and its delay.

2. Smooth Pursuit: tracking a moving target. This is a "continuous” activity as opposed to the discon-
tinuous saccadic control activity. The error here is target position in the left eye, (which should be
{0.0)), and the commands are pan and tilt velocities to the left eye. The pursuit system has delay,
latency, and PID control. In both the saccadic and smooth pursuit systems modeled here, there is
strict (exclusive) left-eye dominance.

3. Vergence: the vergence system measures horizontal disparity between the target position in the left
and right eyes, and pans the right eye to reduce it. The vergence system has delay, latency, and PID
control.

4. Vestibulo-Ocular System: the VOR system is open loop in the sense that its inputs come from the
head positioning system and its outputs go to the eye positioning system. Its purpose is to stabilize
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eyes against head motion, and its inputs are the control signals for head position (XYZ velocities, ABC
angular velocities). It also uses the distance of the target, since that affects the appropriate response.
The VOR should ideally be implemented by inverse kinematics, to which the current implementation
(and presumably the neural one) is an approximation. Its output is commands to the pans and tilt
controls to null out the apparent target motion caused by head motion. It is characterized by delay,
latency, and open loop proportional gain.

5. Platform Compensation: This system is a head-control, not gaze-control system. These systems are
known to interact in subtle and complex ways, but this particular reflex simply attempts to keep the
eyes "centered in the head”, so that the camera pans or tilts are kept within "comfortable” mechanical
ranges. The "comfort function” is a nonlinear one z/((z — zmaz)?), where z is the average pan angle
(to control head ”yaw” movements) or the tilt angle (to control head "pitch” movements). In either
case rmaxz is the mechanically imposed limit of the system. This reflex is open loop (eye position
affects head position}, with delay, latency, and open loop proportional gain.

The system has the capability of operating in two modes: smooth pursuit and saccade. In smooth pursuit
mode, the VOR, platform compensation, pursuit, and vergence systems are left running. In saccade mode,
other controls may be diabled. This allows modelling the effects of turning off vergence, head compensation,
tracking, etc. during saccades. Ultimately it seemed best only to turn off tracking during saccades, but
other combinations are demonstrated below.,

The delays and latencies are implemented with a command pipeline, in which the commanded changes in
velocities are entered opposite the time in the future they are to take effect. Time is discretized to some level,
called a tick henceforth. A larger delay results in entry of the corresponding command further in the future.
Latencies are implemented by dividing the commanded change between as many discrete time periods as
necessary to spread the effect over the latency. The pipeline thus is indexed by (future) time instant, and it
has entries that hold the commanded velocities for the six head degrees of freedom and three camera degrees
of freedom. Each instant also has an entry corresponding to its mode (saccadic or pursuit). The pipeline is
implemented as a ring buffer.

For the delay-free case, the control architecture is strictly independent. That is, controllers are ignorant
of each other’s effects. and the combination of control effects is modeled by all controllers incrementing
or decrementing a common control register (indicating some motor velocity setting). All increments and
decrements are made to the current value that is there already, which perhaps is nonzero because of input
from another reflex. Thus the control commands are summed in the simplest possible way, as if each control
system’s output were a D.C. voltage and all the outputs were soldered together at the effector motor’s input.

The saccadic system shuts down the pursuit system in the sense that for the duration of the saccade (which
is computed from the image distance it must move the fovea and the maximum velocity it can move), all
other commands in the pipeline are overwritten, and the mode is changed to "saccade”. Further commands
trying to affect these instants may be ignored, depending on the (compile-time) policy desired.

NON-ZERO DELAY CONTROL

Slight amounts of delay destabilized the simulated system, as expected {see the Experiments section below).
Control with delays can be stabilized by turning down gains and slowing the response of the system, but its
performance then suffers. Successful control with delays incorporates some form of prediction [Mar79]. The
controller implemented in the simulation is a version of a Smith predictor {Smi57,Smi58), which is the basic
idea behind most modern methods.

Smith’s Principle is that the desired output from a controlled system with delay p is the same as that desired
from the delay-free system, only delayed by the delay p. Let the delay be 277, the delay-free series controller
be C(z), the desired delay controller be C(:z) and the plant be A(z). The delay-free system transfer function
will be
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CA
1+CA°

The delay system with its desired controller has transfer function

CAz-?
1+ CAz~?

But Smith’s Principle is

CAz~P _CA:7?
1+CAz—?  1+CA

This quickly leads to the specification for the controller C in terms of C, A, and z~?:

C
1+ CA(1 —z-?)

C=

This simple principle has spawned a number of related controllers, often arising from each other by simple
block-diagram manipulation. Figure 1 is one block diagram of a Smith prediction controller, and it describes
the implemented system in the simulator.

If the maximum delay of a controller in the system is T, The plant model is a pipeline of enough future
robot states to reach time T into the future, updated and extended once a tick. Ideally the robot’s state is
predictable. since only the control cornmands act on it. Practically there may be some plant noise. In the
work so far, the world prediction is simplified by assuming the world is static and that the robot does all the
moving (navigation in a static environment). As part of the experiments. target motion was added to test
the system’s response to a false target model.

EXPERIMENTS

DELAY-FREE CONTROL

In all the simulations, the goal of the system is to put one or both of its eyes squarely on the target (at
retinal position (0,0)) and keep them there. The head is always in an upright position, so pans rotate the
cameras about a vertical world axis, tilts rotate the cameras about a horizontal axis. With a static head,
pans induce image x motion upon a static, foveated target and tilts induce image y motion. In all the graphs
of this section, the horizontal axis is time, and the vertical axis is pan and tilt error, or equivalently the
image z and y position of the target. Each graph shows both left and right eye z and y errors, but often
the y errors are superimposed since the tilt platform is common to both cameras. In every case there is
"peripheral blur”, which is modelled by adding, outside a small "fovea”, uniform noise to the target (z,y)
location, with standard deviation proportional to 1/d, where d is the euclidean distance of (z,y) from the
(0,0) point. The simulation does not use realistic time-constants and speeds, which instead are scaled so
that interesting effects happen within a few ticks.

Figs. 2 and 3 illustrate the cumulative effect of simply superimposing control capabilities: each operates
independently and their outputs are simply summed at the effectors. Delays are zero, latencies (except for
saccades) unity. In these two figures tracking is by position error signal.
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Figure 1: The implemented Smith predictor control. The block diagram is easily derived from the Smith predictor
equation, with the MODEL PLANT, MODEL WORLD, and MODEL SENSOR blocks corresponding to A. Cis
represented by the block labelled CONTROL and everything below the dashed line. The CONTROL block represents
all five control systems, and the DELAY block represents a vector of their five independent delays. The PLANT,
WORLD, and SENSOR blocks represent the robot simulation. Delayed control is implemented with a pipeline of
controls to take place in the future, and the plant model is a similar pipeline of predicted robot states derived from
the control.
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Figure 2: Increasingly effective delay-free control resuits from superposition of noninteracting controllers. (a) Track-
ing only: The left (dominant) eye pans and tilts, inducing tilt in the right eye. The tracker uses a position error
signal. The right eye gets no pan signal, and its horizontal error accrues from target motion. The left eye tracks
successfully until it hits mechanical stop at tick 14. (b) Add vergence: Both eyes hit stops at about tick 15. (c)
Add head compensation: This control is to keep eyes from hitting mechanical stops by turning the head in the same
direction as the tracking motion. A less-desirable effect is to amplify the tracking signal, overcompensating and
destabilizmgthe tracking. (d) Add VOR, which effectively compensates the head rotation with eye rotations.
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Figure 3: (a) Continuing the previous figure with tracking driven by position error, add saccades in which vergence,
VOR, and head compensation are turned off during saccade. The saccade drives the left eye error more or less to
zero (it is affected by the peripheral blurring effect which makes the initial location of the target image uncertain).
It stews the right eye off target. When VOR, head compensation and vergence are turned on after the saccade the
first two reflexes have a transient effect. (b) Here let vergence run during the saccade but inhibit VOR and head
compensation until after saccade completes.

Fig. 4 shows the effects of tracking with a velocity error signal. Here saccades are initiated if the target falls
outside a fixed distance (here .1} from the fovea.

Finally, Fig. 5 shows the effects of control delay on the system. The smallest delays, applied uniformly or
to just one control, destabilize the system seriously.

DELAY CONTROLS

As derived, the Smith predictor is appropriate for a single system control (or sensing) delay. In our system
there will be differing delays reflecting different software actions (serial line plus VAL-II software versus
VME-bus connection to the eye motor controllers, for instance). The idea of the Smith predictor is easily
extended, however.

Independent Delay Control

Two types of control were implemented using the Smith controller of Fig. 1. In the first, the controllers
are ignorant of the delays of other controllers, and also ignorant of the sharing of output variables between
controllers. Each controller knows its own delay T, and uses the following algorithm. Look ahead time T and
retrieve the predicted robot and control states for that lime. Apply the control appropriate for these future
states now.

Fig 6 shows some sample effects of this independent delay-control strategy. The system is stable for certain
combinations of delays, but is unstable unless all the non-vergence delays are the same.

Interacting Delay Control and Noise

The independent delay control algorithm is not as smart as it could be. The short-delay controls do not look
into the future as far as the long-delay controls, and therefore they do not anticipate the effects of slower
controls. This effect shows up when long-delay and short-delay controls affect each other’s output, either
directly or through the kinematic chain. The reason the verge reflex can run with different delay and aot
destabilize the independent delay control system is that no other control (barring saccade) affects the right
camera’s pan velocity, and panning is at the end of the kinematic chain. Assume each controller knows its
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Figure 4: (a) No vergence, velocity-error tracking with saccades for position comtrol. Tracking is subject to
steady-state position error. (b) Add vergence, and also change head kinematics (unknown to any controllers) from a
"spherical” geometry to the Rochester robot’s configuration of pan, tilt, and optic axes. The changed geometry has

little effect.
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Figure 5: (a) The no-delay controller applied to the system with a constant delay of one tick in all controls. Ideally
this graph should be a delayed version of Fig. 2(d). (b) The no-delay controller applied with zero delay in all controls
except tracking, which has a delay of one tick.
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Figure 6: (a) To be compared with Fig. 2(d) and Fig. 5(a). The Smith predictor with independent control is
stable with uniform controller delays. (b) Independent control also is stable with vergence control delay different. (c)
Saccades induce transients but the system is still stable even if vergence delay different. (d) System is unstable if a
non-vergence control, here VOR, has different delay from other non-vergence contrals.
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own delay T, and the delays of all the other controllers in the set {S} that share an output with it. Then
each controller can use the following (interacting controls) algorithm. Look ahead the mazimum delay M
of any controller in {S} and retrieve the predicted robot and control states for that time. Apply the control
appropriate for these future states at (possibly future) time M-T. This algorithm successfully copes with a
different delay for each control (Fig. 7a).

An easy implementation of this algorithm that loses some flexibility is simply to increase the delay of all
controls that share an output to be the maximum delay of any of their number and apply the independent
delay control algorithm. Then all controls in the set look ahead as far as their slowest member, and act at
the current moment. The resultant slowing of fast controls is of course suboptimal when they do not have
to act in concert with slow controls.

Figures 7 and 8 show some experiments with interacting delay control, and introduce stochastic disturbances
in the inputs and delays. The system is robust against sensor noise, or varying uncertainty in target location.
The preliminary conclusion is that the system destabilizes with unpredictable delays when the outputs are
changing relatively fast, but (of course) is less susceptible to unpredictable delays if the control outputs are
only changing slowly.

DISCUSSION AND FUTURE WORK

SIMULATION AND REALITY

The goals for the simulator were to provide a kinematic and imaging model fairly close to that of the
Rochester robot. The model has no dynamics, but neither does the robot from the point of view of the
applications programmer; the current robot and motor control software hides this level. The simulator does
seemn adequate to illustrate the characteristics of different styles of control and to demonstrate the qualitative
behavior resulting from control interaction, delays, and various forms of uncertainty. As the sophistication
of the control technology at Rochester increases. a useful simulator would have to incorporate increasingly
sophisticated models.

Likewise the simulator’s exterior world and image-processing model is simple, consisting of a single point
whose image is instantaneously and reliably (if noisily) found. To some extent this is also realistic, since it re-
flects the capability of frame-rate feature detection {Bro88], but it ignores the existence of more sophisticated
operations or those with longer time-constants.

Simulation is likely to remain a basic tool in a real-time robotics laboratory, but as the control and visual
environment gets sophisticated the simulations become slow and costly. The advent of cheap real-time
hardware makes it increasingly practical to replace simulations with real-world experiments, which are more
likely to yield relevant results.

COMPARISON WITH PRIMATE GAZE CONTROL MODELS

Because of its experimental accessibility, the simplicity of the plant involved, and the diverse collateral
knowledge about the visual system, the gaze control system is the best-studied biological sensorimotor
control system. The animal model most relevant to our robotic work is the primate, because of the close
relationship of visual attention with fixation that arises with foveal (i.e. narrow-angle, high-resolution) vision.
Gaze control in the cat and rabbit (and frog) is significantly different.

Knowledge of the primate gaze-control system might help provide insight to robot designers, and if the right
hardware were available robotic equipment might be used to implement computational models of gaze control,
thus providing an experimental facility complementary to the usual psychophysical and neuroscientific ones.
The work described here is not yet dedicated to modeling biological systems, but nonetheless comparisions
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Figure 7: (a) The interacting control algorithm dealing successfully with a mixed set of delays. Here the longest
non-vergence delay is three ticks, and the resultant behavior is that of a system whose non-vergence controls have a
uniform delay of that amount. (b) Sensor noise (uniformly distributed disturbance of the target (x,y) location in each
eye with o = 0.02 in each dimension) does not affect stability, but causes excursions larger than its & through the
interaction of tracking and verging. (c) Here with probability .1 a control signal is delivered one tick early, and with
probability .25 it is delivered one tick late. The system is on the verge of instability. (d) With same probabilities as
in (c), more disturbances happen to occur early in the sequence when outputs are changing rapidly, destalbilizing the
system.
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Figure 8: (a) Continuing from the previous figure, the previous sensor noise is added to the system along with the
previous stochastic delays: the system is stable. (b) Here there is no noise (other than peripheral blurring), but the
target model is wrong. The target is moving approximately perpendicular to the robot’s motion instead of remaining
static. The error periodicity of 10 ticks is interesting. (c) Here the situation is as in (b), but the target is moving
faster, and toward the robot. As it gets close the controls cannot respond fast enough and the system destabilizes.
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are inevitable, amusing, and possibly useful. This section is a very brief and admittedly selective sampling
from the immense and rich (i.e. confusing and contradictory) literature on gaze and head control in biological
systems. It seems fair to say that most of these systems interact, and that it is very difficult to lay down
hard and fast rules about what individual systems can and cannot achieve.

Pursuit and Opto-Kinetic Reflex

The Opto-Kinetic Reflex (OKR) causes the eyes to follow a motion of the ‘ull visual field, and is driven
(to first order) by ”retinal slip”, or optic flow. In primates the OKR comes in two stages, a faster (direct)
and a slower (indirect), with the direct being more dominant in man. The smooth pursuit mechanism is to
track small targets, and is often described as being driven by foveal retinal slip. Thus these two facilities
are similar, and there is some thought that the direct part of the OKR response is just the smooth pursuit
system [Col85].

The situation with smooth pursuit is anything but simple, however. It seems to be possible to pursue extra-
foveal targets smoothly. Smooth eye movements cannot normally be induced without a smoothly-moving
stimulus, but they persist after a target disappears, thus arguing that some form of prediction can excite
the response [Eck&3]. Smooth pursuit gain drops with stimulus velocity. Last, smooth pursuit in monkeys
seems to be driven (in a large fraction of individuals) not just by velocity error but also by position and
acceleration errors. Thus a model such as Young's (see below) that suggests a reconstructed target velocity
is the control input (rather than a sensed optical flow) could be augmented with a broader range of error
signals [LMT85].

The simulator has implemented both velocity control and position control with predictable results (compare
Fig. 3(b) with Fig. 4(b)). Without position feedback, the system matches velocity and relies on saccades,
which take place when position error goes over a threshold, for position control. There seems no advantage
to this implementation unless optic flow velocity can be sensed directly, as opposed to position. For instance,
if motion blur could be directly sensed, it would make a direct optic-flow velocity signal. Of course analysis
of a particular motion-blur track could yield its centroid or endpoints, bringing us back to position control.

Vergence and Saccades

The primate vergence system is rather slow, and coupled to the focussing (accommodaiive) systems and the
saccadic system. Vergence and accomodation are coupled pairwise, and the "near triad” is a reflex made up
of these three systems, in which focus and vergence are both driven in the proper direction and faster than
normal when a saccade from close to distant target (or the reverse) is made [Mil85].

Work with the Rochester robot has concentrated on " gross vergence”, mediated through disparity ccmputed
between full-field images with variants of the cepstral filter [OP89]. The simulator described here is driven
by horizontal disparity between the left and right target images. In the simulator, (which does not inciude
focus) the cooperation of vergence and saccades is achieved simply, by the device of letting imaging, disparity
calculation, and vergence reflex run during saccades. This method may or may not be nonbiological (as usual
there is some dispute about the amount of visual processing that goes on during saccades). Its practical
disadvantage is that it is inefficient: It is just as easy to have the saccade control both eyes. The only reason
the current simulator does not run this way is that it is less interesting.

The saccadic system has a longer delay than smooth pursuit (120ms as opposed to 50 ms), reflecting its
higher-level control origins. It can move the eye at 300 to 400 degrees/second. It is often modeled as a
sampled-data system, kept stable by a latency and trigger mechanism that inhibits its firing again before the
system has settled. In our robot system, saccades should not be needed for position control during tracking,
and thus will be associated with shifts of attention, or at least of visual resource commitment.

In the experiments shown, the maximum saccade speed was limited but the maximum speeds for other
reflexes were not (compare the .1 rad/tick saccade rate in Fig. 3(a) with the .3 rad/tick speed of the
tracking and vergence in Fig. 2(d). Clearly the control should not be allowed to command unrealistic
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speeds, and the relative strengths of the outputs must be adjusted. In our simulation, the strictly "left
eye dominant” implementation of saccades and of tracking is almost certainly an exaggeration of the ocular
dominance effects in primates. Still, from a practical point of view it means that the necessary low-level
vision computations do not need to be carried out in both eyes simultaneously.

The Vestibulo-Ocular Reflex

The Vestibulo-Ocular Reflex (VOR) stabilizes gaze bv counteracting commanded head movements with eye
movements. It is the fastest visual reflex, with a delay of oniy approximately 16 mulliseconds. It is an
open-loop control, in the sense that vestibular sensor output is converted to eye muscle input and delivered
through a path of approximately three synapses. It can be a high gain control (gain approximately 1): it
can often exactly cancel out head motion effects. The VOR being open loop, there is a general problem of
how it internally models the system it is controlling.

Research on the VOR has addressed the geometrical aspect of its modelling: the conversion of sensor
signals in the coordinate systems of the semicircular canals to effector signals for the variously-placed eye
muscles. Robinson [Rob85] models the geometrical transformations as 3x3 matrices operating on 3-vectors.
Changing matrix components can accomplish adaptation, and the adaptation can be driven by stimuli
such as retinal slip (indicating a failure of the reflex} without explicitly modelling the sensorimotor system.
Pellionisz {Pel85,PP88] uses tensors to model the differing transformation properties of the sensory and motor
vectors and transformations, and addresses the problem of underdetermined control of the many muscles
that accomplish eye and head movements by the relatively small number of sensor dimensions.

The VOR’s input originates in the linear and angular accelerometers of the otolith organs and semicircular
canals. They have very short time constants, but the VOR operates correctly for slow velocities. This leads
to the postulation of a "velocity storage mechanism” that integrates the output of the accelerometers and
makes the resulting velocity signal available for control (e.g. [RC85]).

Other VOR work addresses its time-dependent behavior: its gain and phase-lag characteristics under different
conditions (e.g. several papers in [BJ85]). Much of the VOR’s behavior can be explained as parameter
variation among its gain, bias, and time constants. Miles et al. [MOL85] develop a multi-channel model
to explain VOR’s ability to cope with the frequency-dependent output characteristics of the sensors, with
frequency-selective adaptation properties of the VOR itself, and with other adaptive properties of the VOR.
This work presents explicit transfer functions for the semicircular canals, the oculomotor plant, the velocity
storage mechanism, and the neural channels that convert head velocity estimates to motor outputs. The
channel model is linear and can be stated as a lumped-parameter linear system, but the channels make it
easier to identify which gains must be changed to reduce system errors.

A basic aspect of the VOR is its adaptability. The reflex adapts over time to changes in the optical system
(e.g. artificially induced dysmetria) [Rob85]. The VOR interacts with other reflexes and the stimuli that
evoke them. For example, large-field rotations that elicit the OKR have an interesting effect. If they are
slow, they bias the VOR (and the opto-kinetic system) in the same direction, which tends to cancel the
movement effect. If they are fast, they induce effects in the opposite direction, which may be interpreted as
ignoring the movement effect [Col85]. VOR gain can be depressed from 1.0 to 0.1 by training that involves
no visual input (subject imagines tracking a target attached to head while moving head in the dark), and is
likewise significantly affected by verbal instructions and other seemingly unrelated activities (such as mental
arithmetic) [JB85].

Adaptation and modeling can come together in VOR behavior that adapts to repetitive patterns (a perhaps
familiar example is disembarking from a longish sailing journey). One way to achieve this capability is
through a "pattern storage” mechanism that effectively produces and uses a model of the outside world.
Some workers are attracted to this idea, others seem to think it is unnecessary and are explicable by, for
instance, channel adaptation.

What has all this to do with a robotic VOR? Many of the issues mentioned above can be made to vanish.
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We may know the relation of the sensor output to the desired motor output if we decide to model the robot
and head kinematics accurately. (In fact in the simulation, the robotic VOR makes several approximations,
including a "spherical” geometry for the camera rotation axes, a small-angle approximation, and others.) We
can sense velocities directly or even actively monitor the relevant control signals we need to cancel. The fun-
damental issues that still need significant work involve adaptation and interaction. Adequate understanding
of these issues would not only give the robot system the efficiency exhibited by natural systems, but could
mean that such exercises as accurate kinematic modeling would become unnecessary.

Head Control

There is less written on head control than on gaze control, but a good recent collection of work exists {[PR88].
There are various head stabilization reflexes, some tied to optical stimulation. The relation of head control
strategies to the evolution of particular brain mechanisms and the existence of foveate vision is explored
by Roucoux and Crommelinck [RC88]. Some fairly detailed biomechanical head models exist, and head
movements have been investigated from the point of view of optimal control theory. Head movements can
be quite rapid (600-700 degrees/second) and are part of normal long-distance saccades in primates. Thus
the saccadic and head-control system work together to achieve gaze redirection. There has been some work
here (e.g. [Gui88]) indicating that head movements can take place at differing times relative to saccades.
Typically, they lead or lag depending on whether the target location is predictable or not.

This coupling of head and eye movements is clearly more sophisticated than the compensatory reflex imple-
mented in the simulation, which is not coupled to saccades at all and which must lag eye movements since it
is only driven by eye positions. Thus more work needs to be done if we are to achieve the increased rapidity
of gaze redirection that arises when both head and eyes are moved in a coordinated way.

Another Model of Delay Control

The control scheme implemented in this simulation, the Smith predictor, differs from a scheme seemingly
first proposed in a gaze-control context by Young, taken a step further by Robinson, and used recently in
robotic gaze-control for an agile, two-eyed robotic head at Harvard University [CF88].

Young [You77] wanted to explain how smooth pursuit avoided instability in the presence of two difficulties
that apply if tracking is modeled as a pure negative feedback system. First, the error, and thus control,
signal is zero when accurate tracking is achieved; this should send eye velocity transiently to zero. Second,
tracking performance is better than it should be given the delays in the control loop and the time constants
of the processes. His proposal is that the system tracks not the retinal image, but a neural signal that
corresponds to target motion (in the world).

In 1971 (for a recent reference, applied to saccadic, tracking, and limb control, see [Rob88]) Robinson
proposed a mechanism to implement Young’s idea. In the negative feedback system the eye velocity is fed
back and subtracted from the target velocity (with some delay). If the eye is in the process of tracking, then
the target velocity is the sum of the eye velocity (with respect to the head) and the target’s retinal velocity
(its velocity with respect to the eye). But the latter is just the error signal resulting from negative feedback.
Thus an estimated target velocity signal can be constructed by positively feeding back the commanded eye
motion into the control loop, delayed to arrive at the proper time to combine with the error term produced
by negative feedback. This mechanism not only provides a signal based on the target’s true motion, but it
cancels the negative feedback and thus removes the possibility of oscillations.

Robinson’s scheme is related to the Smith controller shown in Figure 1 in the following way. In Figure 1,
the signal at E is an error signal, and the one at D is a difference of error signals that is zero when perfect
tracking is taking place. This difference of errors is a delayed (but consistent) error signal that is added to
the predicted error signal in the non-delayed path C. The controller in Figure 1 tries to drive errors to zero.
To change Figure 1 to Robinson’s scheme, delete path C and remove the modelled world and sensor from
the lower half of the block diagram. Then path B carries the simulated plant, not the simulated error. Path
E still contains error, but path D now contains a prediction, or reconstruction, of the world state. Thus
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the controller now must treat the signal at D as a set point to be achieved through open-loop methods, not
as an error. Robinson proposes parametric adaptive control (in the form of two related gains) to provide
adaptative capability should the open loop yield the wrong results.

There are thus some similarities between the two schemes, but the underlying control philosophies are rather
different. In paricular, losing the power of negative feedback is a large sacrifice that the roboticist may
not need to make. The Smith predictor control system keeps the advantage of feedback control (running
on the modelled world and plant). There are many methods of estimation, observation, and prediction of
world, sensor, and plant used in modern control theory, and thus the Smith model allows for flexibility in
the assumptions underlying its predictions.

FUTURE WORK

We plan to supply more quantitative model parameters, and to try to model the spatial and temporal scales
that actually apply in the laboratory. Sensitivity analysis will be undertaken to quantify the effects of various
disturbances, especially the problem of unpredictable delays.

We plan to integrate some of the existing Kalman filtering tracking utilities [Bro89,BF88] to perform es-
timation of the target’s state. Also we may explore estimation techniques {Gel73,Ber76,Eyk74] instead of
simulation techniques to predict the state of the plant.

The simulated system can support other relevant aspects to the control problem, including the important
one of adapting to changes in the plant. In other work, we have implemented "the MIT rule”, which is
a gradient descent method similar to back-propagation learning in neural nets, to learn part of the robot
head geometry. In a way this learning system acts like another control system, with inputs the discrepencies
between expected and observed target motions given eye motions, and outputs are parameters to the modeled
plant (in this case, lengths of links in the head kinematic chain).

[mplementation of an increasingly sophisticated gaze control system on the Rochester robot should take
place over the next few years. We anticipate substituting a Butterfly Parallel Processor with mulitiple input
and output ports for the central controller of the system.
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Towards Autonomous Mobile Robot Navigation!

Claude Fennema, Allen Hanson, Edward Riseman
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01002

ABSTRACT

The UMass Mobile Robot project is investigating the problem of intelligent navigation of an
autonomous robot vehicle. Model-based processing of the visual sensory data is the primary
mechanism used for obstacle avoidance, movement through the environment, and
measuring progress towards a given goal. This paper describes our current approach to
goal-oriented navigation through a partially modeled, unchanging environment which
contains no unmodelled obstacles.

The navigation system integrates perception, planning, and execution of actions. Oof
particular importance is that the planning processes are able to reason about landmarks
that should be perceived at various stages of plan execution. Correspondence between
image features and expected landmark locations are used at several abstraction levels to
ensure proper plan execution. Experiments in this and three companion papers
demonstrate the performance of the various components within the navigation system.

L _INTRODUCTION

The UMass Mobile Robot project is investigating the problem of enabling a mobile
automaton to navigate intelligently through indoor and outdoor environments. At the
foundation of our work is the premise that higher-level vision beyond the first stages of
sensory processing will greatly benefit from, and in many cases require, the use of
knowledge and models of objects in the environment. Thus, model-based processing of the
visual sensory data is the primary mechanism used for obstacle avoidance, movement
through the environment, and measuring progress towards achieving a given goal.

Our mobile robot, called Harvey, is a Denning platform ultimately intended to navigate
through offices, hallways, and university grounds as it carries out commands such as
"Fetch the book" or "Bring this to Allen". Since this is a rather formidable task, we have
developed a research plan that will be carried out in stages of increasing generality and
functionality. In the early phases of this research, we wish to balance generality with
setting sufficient constraints on the initial research goals to be achievable.  Qur initial
experiments focus on robust goal-oriented navigation through a partially-modeled,
unchanging environment that does not contain any unmodelled obstacles.

If robust autonomous navigation can be achieved in this restricted domain, then a variety
of challenging problems can be considered as the constraints are eased on the assumed
knowledge about the environment. These problems include: navigation in a partially
known environment with obstacles, navigation in the presence of independently moving
objects, and exploration of an unknown environment to learn a model in order to support
future model-directed navigation. This paper, however, describes the current UMass
approach to the initial problem domain of robust navigation in a partially-modelled

IThis work was supported in part by the Defense Advanced Research Projects Agency under
contract numbers F30602-87-C-0140, DACA76-85-C-0008, and DACA76-86-C-0015, and by the
National Science Foundation under grant number DCR-8500332.

219

]




cnvironment, and our experiments in testing an implementation of such a system.
I.1 Related Mobile Robot Research

We begin with a brief survey of previous mobile robot rescarch; other relevant research
will be addressed in the sections discussing particular system modules. The Carnegie-
Mellon NAVLAB (Kanade, Thorpe et al. 1986; Shafer, Stentz et al. 1986) and the Martin-
Marictta ALV (Lowrie, Thomas et al. 1985) arc systems that can move down a path or road or
navigate off-road terrain, but the processing has been restricted to simple goals, such as
controlling the vemcle relaiive to the sides of the ioad, or avoidance of major obsiacles
such as trces. Recent demonstrations of these systems have been quite interesting, but a
laser range sensor providing depth information played a significant role in the obstacle
avoidance capabilities.

Brooks (Brooks 1986) has an unusual demonstration of low-level behaviors and motor
activity to allow a relatively inexpensive robot to wander in an unknown ecnvironment
carrying out some purposeful activity, but this work has not yet focused on the
achicvement higher-level goal-oriented navigation tasks, and does not make use of models
of the environment.

Dickmanns and Graefe (Dickmans and Grafe 1988a; Dickmans and Grafe 1988b) have
dcveloped techniques for using image features in a real time feedback control loop to
control the motion of a car on the autobahn. In the system we develop in this paper their
tcchniques could serve as part of the function we term "action level servoing”. The
approach described here, like Dickmans and Graefe, accomplishes servoing by tracking
imagec features, but here the tracking features are constructed from landmarks which have
been sclected from a knowledge base.

Due to the complexity of visual perception, autonomous navigation projects, such as those
cited, have utilized only limited visual processing, ecither in terms of the features extracted
from the environment, or the modcled set of objects to be recognized in the environment,
or both. This is not meant to be a serious criticism, but rather serves as an observation for
the reader who does not recognize the extreme complexity of the problems of vision and
autonomous navigation in natural outdoor domains.

Recently, Faugeras (Toscani and Faugeras 1987) used more sophisticated vision algorithms
involving stereo to derive depth in an office scene. Depth information was extracted from a
stereo pair, the robot was moved some distance, and a second stereo pair was used to derive
depth and the associated motion. Again, this effort does not represent a full robot
navigation system, and made no use of high-level models.

I.2 Overview of System Modules

The processing modules that provide the basic functional capabilities for our mobile robot
system are bricfly outlined below. There are many possible control strategics and system
organizations that can bc imposed on top of these modules to support effcctive mobile robot
navigation. In Section III, we bricfly outline one such control strategy.

Modelling the 3D Environment (Connolly 1989; Connolly and Wciss 1989) - Geometer is a
solid modelling package that was jointly developed at the University of  Massachusetts and
General Electric Corp.  The CAD system  provides tools for representing knowledge of shape
in an  annotatable hicrarchy.

Planning (Fennema, Hanson et al. 1989; Fennema, Riscman et al. 1988)- Tasks (or goals) are
translated by a command interpreter and deccomposed by a hicrarchical problem solver into
a scquence of milestones and proposed actions.  Plans arc developed depth-first, with less

220




detail away from the current task; task failure triggers dynamic replanning.

Monitor Plan Execution (Fennema, Hanson ¢t al. 1989; Fennema, Riseman et al. 1988) - Plans
are exccuted in a repetition of two operations: recognize milestone and execute primitive
action.  Each milestone is constructed from a perceivable 3D landmark derived from the
model. Finding the projection of the landmark in the image signifies a successful
completion of the associated action.

2D Line Model Matcher (Beveridge, Weiss et al. 1989a; Beveridge, Weiss et al. 1989b) - This
module finds a best match and fit of a given 2D linc model to 2 subsct of data linc segments
that may have been fragmented, skewed, omitted, etc. during low-level processing. A
scarch through the plausible symbolic correspondences between model and data lines is
performed, and the optimum 2D translational and rotational fit for each is computed as a
closed-form solution.

3D Pose Refinement (Kumar 1989) - Given correspondences between a set of points and lines
in a 3D model and a 2D image, the 3D camera location and orientation is computed as an
optimization procedure. In addition, uncertainty in the output parameters as a function of
the variance of the noise in the input parameters is provided.

In addition to these modules, several basic vision modules have been developed. These
modules include a fast line finder (Kahn, Kitchen et al. 1987) derived from a straight line
algorithm developed by Burns (Burns, Hanson et al. 1986), a histogram based region
segmentation algorithm (Beveridge, Griffith et al. 1989), an algorithm for determining
subpixel line placement given an image line, and a local template correlation mechanism
(Fennema, Hanson ¢t al. 1989).

I EOMETER AND DE F THE ENVIRONMENT

I1.1 Geometer

Models of the vehicle's environment are built using Geometer, a three-dimensional solid
modeling package developed jointly by UMass and the GE Research and Development Center
(Connolly 1989; Connolly and Weiss 1989). Geometer is implemented in LISP and is oriented
towards image understanding (although it has many other potential applications). It
currently runs on several types of workstations, including the Symbolics LISP machines, TI
Explorers, Vax workstations, and Sun workstations. Refer to (Coni:olly and Weiss 1989) in
this proceedings for additional information about Geometer.

Objects in Geometer are represented in an annotatable hierarchy:
World = Object # Faces = Edges = Vertices.

In Geometer, the language of simplicial complexes in algebraic topology (Eilenberg and
Steenrod 1952; Greenberg and Harper 1981) has becn adapted for describing surfaces. It
provides generality and an explicit representation of edges, vertices, and faces. Each of
these serve as a type of geometric primitive, and can be paramcterized as a smooth function

from a point, unit interval, and triangle to R3 respectively.  Surfaces arc constructed as the

union of these primitives, and are denoted by a sum of simplices. This representation
produces a triangulation of the surface, where the triangles arc not necessarily planar.

I1.2 Constructing Environmental Models

The system begins with an accurate, but incomplete, model of the world implemented in

Geomeicr, augmented by the locale structure described in the next section. We have
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constructed a 3D model of portions of the interior of the UMass Graduate Research Center, as
well as a portion of the campus surrounding the building. The outdoor model (shown in
Figures 1 and 2) includes buildings (windows, doors, pillars, etc.), sidewalks, lamp posts,
telephone poles, and most of the significant objects in the area. This model has been
annotated with properties of objects and surfaces which are useful to the planning and
vision routines used by Harvey.

Figure 1. Geometer model of the area  Figure 2. A more detailed Geometer model of the
around the Graduatc Research Center same areas shown in Figure 1 with hidden lines
used in the experiments. removed. Note that additional landmarks, such as
telephone poles, have been added.

The construction of an accurate 3D model of an environment is a fairly difficult job. The
first attempt involved digitizing data from engineering blueprints using a bit pad
(digitizing tablet). This method is quite error prone given the spatial resolution of the bit
pad, since the blueprints were drawn to a scale of 40 feet to an inch We found errors of up
to 10 feet in the 3D model constructed in this manner. In the second attempt, theodolites
were used to survey the landmarks. This method, while accurate, is very time consuming.
As a check, some of the theodolite data was verified by direct measurement. On the average,
the mcasured distances matched with the surveyed distances within 0.2 feet.

b T8

I1.3 Locales

The model of space in this system plays a rather central role in most of the robot's activities.
During planning, for example, the model is used to construct routes. Consequently, the
concept of doorways, portals, exits, and entrances must be represented. During plan
monitoring, the model is used in a top-down fashion to control visual perception by
specifying what is to be "seen" and where to "look for" it. In this situation, only the space
within the perceptual field of view of the robot is relevant. If the robot gets lost, the world
model is used as a means for localizing it within the environment. Space should be
represented and organized in a w2y which simplifies these tasks.

Conceptually, our view of the organization of space is inspired by the topological notion of a
neighborhood. Hierarchically organized neighborhoods serve to successively localize a
point to a finer resolution. We use this concept as a means for localizing the agent (robot)
by associating with each neighborhood a means for determining whether or not the agent
is inside it. This neighborhood-test pair is called a 'locale’. Locales impose an organization
on 3D space and partition it into convenient subspaces that are used for planning and robot

localization.
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A locale is represented by a data structure that captures its neighborhood-like properties
via a 3-D shape description of the locale and a contained-by hierarchy as shown in Figure 3.
Each locale also contains additonal information, such as its shape descriptors as shown in
Figure 4. From this locale data structure, it is possible to construct a test to determine
whether or not the agent is in a particular locale and to pick landmarks to act as milestones.
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Figur . Locales are subspaces of the Figure 4. The actual shape descriptions of
environment which are organized into a each locales is a hierarchy of geometric
hierarchy by set inclusion. This simplified entities defined in Geometer., Shown are the
example shows three levels of locales entity properties used during perceptual
representing the Graduate Research Center reasoning to construct landmark.
environment.
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Each 1ask given to Harvey is translated by a command interpreter and problem solver
which ultimately produces a set of navigational goals. The execution of these goals is
accomplished by a tight interweaving of planning, perception, and action, orchestrated by
a dynamic planning and execution scheme (Fennema, Hanson et al. 1989; Fennema, Riseman
et al. 1988) called "plan-and-monitor". This subsystem works with plans, each represented
as a sequence (MO Al M1 .. AG MG) of milestones (Mk) and proposed actions (Ak).
Milestones are used to verify the successful completion of a particular phase of the plan.
They are composed of 3D landmarks (perceivable physical events) and their expected
location with respect to the robot at the completion of the appropriate phase of the plan.

As a plan is executed milestones must be verified (usually visually) before the next action of
the plan can be executed. For example, if the sequence of milestones up to M7 have been
perceptually verified to be in the proper position in the image (i.e. within the acceptable
crror bounds), this means that actions Al, ..., A7 have bcen successfully completed, and it is
appropriate to take action A8. If M7 cannot be verified, then the plan must be modified. In
this way milestones allow the progress of the plan to be monitored, and trigger replanning
before the next action is taken when perception and milestone do rot agree(Fennema,
Riscman ct al. 1989). Complex actions and tasks also trigger replanning in order to rcfine
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them into a plan subsequcnce of milestones and primitive actions which can be directly
cxecuted by the hardwar.

The plan-and-monitor exccutive directs planning, perception, and cxecution in such a way
as to dynamically modify and refine the plan to fit the actual results of each action and the
details of the perccived environment. The principal activities involved in this process are:
planning, milestone recognition, determination of location, and ecxecution of primitive
actions.  This interweaving of perception, planning and action makes specific what task is
cxpected of perception, and provides a mecans for focusing the knowledge available for that
purposc. The results is a distribution of perception and perceptual reasoning into all
aspects of navigation. Route planning uses perceptual reasoning to select appropriate
pcrceptual milestones; plan progress is mcasured using perception; perception is used to
reclocate the robot when a milestone is not recognized; and during the execution of
primitive actions, low-level perceptual feedback is used to keep the robot on the expected
trajectory.  The different levels of control all use model-directed vision and comparc what is
scnsed to what is expected, issuing corrective commands to minimize any difference.

Plan cxccution depends upon the recognition of milestones. The difficulty of using vision
to perform this task in a reliable and general manner has encouraged us to attack this
problem in two ways. Both methods use model-directed processing by comparing restricted
perceptual processing to what is expected il the robot's motor actions are correct. The next
scction describes a type of low-level perceptual servoing used during execution of primitive
actions.  Section 5 describes a more complex method for matching models to landmarks and

refining the position of the robot based on thcse matches.

1V, EXECUTING PRIMITIVE ACTIONS: PERCEPTUAL SERVOING

Navigation goals are ultimately translated into primitive actions which can be directly
cxecuted by the robot vehicle; in the case of the Denning platform, these are (MOVE
distance) and (TURN angle). Even at this primitive action level, however, ecxecution errors
arc probable. As the robot rolls along an environmental surface a slippery spot, a bump on
the surface, or ecven a bulge in its tire may throw it off course, causing inaccurate
cxecution.

It is possible to reduce the error incurred when executing a primitive action by servoing
on promincnt visual features in the environment. Using information obtained from the
mcasured discrepancy between where the features should be and where they actually are, it
is possible to determinc the corrective action required to bring the positions into
agrcement.  This action level or perceptual servoing has the effect of locking the robot
onto a trajectory which improves the accuracy of the primitive actions over that which
would be obtained without servoing.

In order to determine the usefulness of servoing, a simple version was implemented that
uscd correlation to mecasure the deviation of actual motion from intended motion. Several
cxperiments, both with and without corrclation servoing, were run. In the experiments
Harvey was to roll along a straight linc 40 fcet long, marked on the floor of a Graduate
Resecarch Center hallway For the experiments in which servoing was used, an artificial
target was placed on a door at the end of the hallway, since the Geometcr model of the
intcrior of the building was not complcte. The target was a circle approximatcly cight
inches in diameter with two opposing black quadrants and two opposing white quadrants.
The robot's goal was to move down the corridor directly towards the target. To determine
course dcviation, the wchicle was stopped cvery two feet and its deviation from the marked
linc was measurcd.

The cxperiment was run a number of times; the results in Table 1 represent the best one in
the sensc that the unscrvoed results represent the smallest deviations encountered during
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the trials.  The z-axis referred to in the table is the line the vehicle is following with ~=0
defined as the starting location. The x-axis is a linc perpendicular to the z-axis and pointing
to the right. Total distance traveled is z-unscrvoed and deviation is x-unservoed. Even after
a rather painstaking sct up proccdure the vchicle wandered over two inches f{rom the line
during a 20 foot motion. Gther runs resulted in as much as a foot deviation in unservoced
mode.  Most of the trials in unscrvocd mode were stopped at around 20 fcet becausc the
vehicle was significantly off course and the total deviation was increasing. In contrast, in
servoing mode the vehicle stayed within .3 inch of the line for 38 feect. It is worth noting
that in both ecxperiments the actual distance covered was considerably less than the
intended distance. It is consistently short by a constant factor (to 3 decimal places), due to
saaecdrate  calibration of the hardware,

Table 1. Results from one experiment
(All measurcments arc in inches)

intended-z | unservoed-z| servoed-z intended-x| unservoed-x| servoed-x
24, 22.6 22.8 0.0 0.0 +0.13
48, 45.5 45.7 0.0 -0.3 +0.13
72. 68.3 68.5 0.0 -0.4 +0.13
96. 90.9 91.3 0.0 -0.6 +0.13
120. 114.2 114.3 0.0 -0.7 +0.06
144, 136.3 136.9 0.0 -1.1 0.00
168. 158.2 159.5 0.0 -1.3 -0.13
192. 181.8 182.2 0.0 -1.8 -0.13
216. 204.6 205.0 0.0 -2.0 -0.38
240. 228.3 227.7 0.0 -2.1 -0.25
480. 456.0 0.0 0.0

The results of these cxperiments arc cncouraging and support the idea of action level
pcreceptual servoing over rcasonably short navigation legs; additional results for (MOVE
distance) as wcll as scrvoing results for (TURN angle) arc presented in (Fennema, Hanson et
al. 1989). Once the Geometer model of the building interior is complete, similar experiments
will bc performed using actual geometric fecatures rather than the artificial target.  When
wecather permits, the vechicle will be moved outdoors and the Geometer model described in
Section II will be used to dectermine the effect of terrain cover and topography on servoing
accuracy.

V. RE NIZING AND USIN D LANDMARK

Rccognition of 3D landmarks involves matching an object model to data extracted from an
image, and this task has two parts: a)determining the correct correspondence between
object fecatures and image fcatures and, b)dectermining the position of the object with
respect to the camera.  We refer to the former task as 2D model matching (Section V.1) and
to the latter as 3D posc refinement (Section V.2) Thesc sub-tasks are interdependent, since
an object's position relative to the camera in 3D space cannot be dctermined without
dctermining a correspondence to image fcatures, while the correct correspondence
dcpends on the object's 2D appcarance and hence its rclative position and oricntation in

space.
V.1 2D Model Matching
In contrast to the approach dcveloped by Lowe for thc SCERPO system (Lowc 1985; Lowe

1987) we have choscn to scparate the 2D processing of model-to-image matching from the 3D
optimization process for computing the camecra pose once the correspondences between
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model and image arc completed.  Thus, we restrict ourselves in this section to the problem of
matching a 2D model to a sct of fragmented, skewed, and missing linc segments, a rather
challenging perceptual organization problem. The model line to image line
correspondences determined from this 2D matching mecthod are used as the input to the 3D
posc computation discussed in the next section.

We believe that therc are strong incentives to solve as much of the identification problem

as possible via processing in the 2D image space. The combinatorics of establishing
correspondences between object and image features dominates the identification problem,
and geometric computations intcgral to this process arz simpler in 2D than in 3D. In

particular, Beveridge et al (Beveridge, Weiss ct al. 1989a; Beveridge, Weiss et al. 1989b) show
that the determination of the optimal position of an object's 2D projection with respect to
corresponding line fecatures has an analytic solution in the two dimensions of image space.
This closed form solution for line correspondence is a new result and we believe it to be a
significant contribution. It is highly doubtful that the rclated 3D problem has an analytic
sclution for determining model positions that minimize point-to-line and roint-to-plane
distances.

Given that matches will scldom if ever be perfect, the emphasis must be on determining the
‘best’ of the imperfect matches. Hence matching is naturally posed in terms of optimization
over the possible matches. By establishing an objective measure of match quality, the
probicm becomes one of determining the correspondence between model elements and data
line scgments for wiich the measure is optimal. The correspondence problem is
combinatorial, and gencrally involves mapping one model line to many data lines. A second
optimization problem is implicit in the correspondence problem. In order to measure the
quality of a given model-data line correspondence, the best 2D position of the model with
respect to the data must be determined, and the extent to which they do not spatially
coincide must be measured. This we call the fisting problem. Hence, a match involves both
model-data correspondence and an associated best-fit position.

The following is a sketch of the basic steps used to obtain a good model match:

+Detcrmine the search space of correspondences. Lacking constraints on model
position, all data lines segments possibly correspond to every model line segment. If
constraints are available, only pairs of model and data lines satisfying these
constraints nced be considered.

*Dctermine promising model positions if the scarch space is large. Use these positions
to determine constrained scarch subspaces made up of only correspondences
consistent with the estimated position. A promising model position may be found
cither through a generalized hough transform or by identifying prominent features.
The gencralized hough technique involves an analysis of the space of possible two-
dimensional spatial transforms to bring the model and data into alignment.
Identifying a prominent fcature may involve finding a distinctive part of a model,
such as a comer and then using that to position the model as a whole.

«For each of the constrained scarch spaces obtained above, use iterative refinement to
determine a best match. Upon each iteration perturb the correspondence, adding or
delcting one or several data lines, and then determine the new best-fit model position
and related match crror. If the match error is reduced adopt the improved match. Stop
when the match can no longer be improved. The best of the resulting matches is
taken as the final match.

Results are presented for 2D model matching in Beveridge (Beveridge, Weiss et al. 1989b)

using both synthctic data and images obtained from the robot vehicle. Sample results from
this paper for one frame of a six frame image sequence is shown in Figures 5 and 6. The
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output from the 2D model matching system provide the input for the 3D pose refinement
computation presented in the next section.

H
S

Figure 5 2D Modeling Matching Results. Figure 6. 2D Model Matching Results. Matches of

Projections of the six 3D navigation landmark model linc segments with image line <cgments; the

models onto the 2D image plane using the current dark lines represent the matches. These matches are

position of the robot. used by the 3D pose refinement module described in
Section V.2

V.2 3D Pose Refinement

Kumar (Kumar 1989) develops a solution to and mathematical analysis of the pioblem of
estimating camera location and orientation from a set of recognized landmarks appearing
in the image. Given correspondences between the 3D landmark model lines and 2D image
lines, the goal is to find the camera (or robot) rotation and translation which map the world
coordinate system to the camera coordinate system under perspective projection.  Because
of the difficulties encountered in trying to establish accurate endpoint positions for lines
(Kumar 1989; Lowe 1985; Williams and Hanson 1988), we assume that correspondences
established between model and data are line correspondences and not endpoint
correspondences. In addition, intrinsic camera parameters, such as focal length, field of
view, center of the image, size of image, etc. are assumed to be known (Hom 1986; Kumar
1989; Lenz and Tsai 1988).

This problem. under various names and guises, has been addressed by several rescarchers,
c.g. see (Ganapathy 1984; Horn 1987; Linnainmaa, D. et al. 1988; Wolf 1974); most of the
techniques assume line endpoint data, are iterative in nature, and require an initial
estimate. Liu, Huang, and Faugeras (Liu, Huang et al. 1988) present a solution to the "camera
location determination’” problem which works for both point and line data. Kumar's
approach is bascd on their constraints, derived from the observation that the 3D lines in the
camera coordinate system must lic on the projection plane formed by the corresponding
image linc and the optical center. Using this fact, Liu et. al. separated the constraints for
rotation from those of translatioi, leading to a solution in which rotation is solved for first
and then translation is obtained using the rotation results.
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The technique developed by Kumar to solve for the rotation and translation parameters
differs from that of Liu et al in two significant ways. First, rotation and translation are
solved for simultaneously, which makes more effective use o the constraints and is more
robust in the presence of noise. Second, the nonlinear technique used to solve for rotation
and translation is adapted from Horn (Horn 1987) Kumar's version of this optimization
technique provides much better convergence properties than does Liu et al's solution
method based on Euler angles.

Kumar also develops uncertainty measures for the rotation and translation parameters.
Noise in the data is assumed to be only in the image. The 3D modcl data is assumed accurate.
The data for each image line can be specified by two parameters 0; and p; (a polar coordinate

representation of lines). For the analysis, the noise for both 6; and pj is assumed to be

Gaussian distributed with zero mean and
known variances.  Furthermore, the noise
is assumed to be uncorrelated for different
lines. Closed form expressions are
developed for the variance of the error in
the output parameters (rotation and
translation) as a function of the input data
and output translation and rotation values.
Kumar shows that the error in the output
parameters is linearly related to the noise
in the input data. The reader can refer to
Kumar's paper in these proceedings for
more details.

Figure 7 shows the results for one frame
(the same frame shown in Figures 5 and 6)
of the six frame sequence used in one of
the experiments. The figure shows the 3D
model lines after projection back into the
image plane wusing the vehicle "pose"
computed by the 3D pose refinement
algorithm which solves simultaneously
for  the rotation and translation
parameters.  For this particular frame, the

crrors  (in feet) for the posi[.ion O_f, the Figure 7. Results from 3D Pose Computation. The
robot (x.y,z) are (.1, 06, .03); additional ‘ pi0 jines are the 3D landmark segments reprojected
results for the other frames of this ., e image plane after 3D pose refinement using

scquence are. given in Kumar's paper in the model line-data line matches shown in Figure 6.
these proceedings (Kumar 1989).

vI NCLUSION

The work presented here represents the current status of a long term research effort
lcading to the development of perceptually-based navigation systems for autonomous
robots. The focus of the research is on environmental modeling, planning, plan
monitoring, and vision. These four components are tightly coupled in a system which
provide the flexibility and extensibility required for an experimental testbed for robot

navigation.

Because the vagaries of the physical world affect plan execution in unknown ways, plans,
no matter how carefully constructed, cannot simply be blindly executed. [Each step of the
plan must be carefully monitored and compared to expectations. The systcm accomplishes
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this by defining milestones associated with each planned action. The milestones act as
prcconditions for subsequent plan steps; the next step cannot be executed unless the
milestone is satisfied. This assures a correspondence between the environmental model and
the assumed position of the robot relative to the model and the actual position of the robot in
the physical world. Failure to satisfy a milestone causes replanning to take place.
Intcrweaving perception, planning, and action in this way makes specific what task is
expected of perception and provides a means for focusing available knowledge on local
goals.

Expcrimental results from the system thus far are encouraging, although a number of
issuecs remain to bc explored. Harvey's world is completely known, which is perhaps an
unrealistic assumption for an autonomous robot. The perceptual servoing mechanisms
assume that 3D landmarks can be accurately extracted from the geometric model of the
cnvironment. It remains to be seen how the requirement of complete knowledge can be
rclaxed yet still maintain the idea of perceptual servoing. Incorporating the type of
rcasoning demonstrated by the schema system (Draper, Brolio et al. 1989) might allow
Harvey to respond to instructions like "....continue down North Pleasant street past the
Graduate Rescarch Center, then turn left and..."

A unique feature of the model matching component is the separation of the process of
positional updating into two steps: 2D matching followed by 3D pose refinement. The
robustness of this technique must be determined and its computational efficacy over many
cxperiments in multiple domains must be explored.

Finally, navigation is an extremecly computationally demanding task, yet real-time
performance is crucial for a mobile automaton whose survival may depend upon reaching
critical decisions in a short period of time. An ongoing aspect of the work reported here is
the cxploration of means by which the navigation task may be distributed over suitably
configured parallel architectures. Two complementary lines of research are currently
underway, utilizing a Sequent Symmetry multiprocessor system and the University of
Massachusetts Image Understanding Architecture.(Weems, Levitan et al. 1989).
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ABSTRACT

We present a unified approach to the problems of two distinct areas of computer vision; (i) classification of the intrinsic
composition of material surfaces, and, (ii) separation of diffuse and specular reflection components at illuminated points
on object surfaces. For the first area under consideration, the majority of object surfaces can be simply classified according
to their basic electrical properties; metal objects (e.g., aluminum, copper) conduct electricity rather well while dielectric
objects (e.g., rubber, plastic, ceramic) conduct electricity poorly. Classification of image regions according to whether they
correspond to metal or dielectric material can provide important information both for scene understanding, e.g., it can
be used to prune hypothesis trees, and for industrial inspection, e.g., it might be used in printed circuit board inspection
where precise localization of dielectrics or metals are required. For the second area under consideration, a major hindrance
to image understanding algorithms are the presence of specular highlights on object surfaces. Specular highlights appear
on object surfaces where the specular component of reflection from illuminating light sources is so dominant that most
detail of the object surface is obscured by a bright region of reflected light. By quantitatively separating diffuse and
specular components of reflection intrinsic object detail can be restored in the diffuse component image. Also the diffuse
and/or specular component images can be more readily used for vision algorithms that compute local surface normals
from radiometric information.

Prior to this work no definitive vision algorithm to classify material composition is known to exist (other than some
artificial encoding scheme). This excludes the very specialized work of applied physicists which is not practical for most
vision applications. The technique presented for separation of reflection components extends the current limitations of
previous methods to only dielectrics to include metal surfaces as well. All the techniques presented in this paper rely
upon the empirical determination of the polarization Fresnel ratio . Thus the techniques for material classification and
separation of reflection components are dependent upon the same experimental process, enabling them to be performed
essentially in parallel. We show how once the polarization Fresnel ratio is computed at a pixel, how the object material
at that pixel is classified as a dielectric/metal, and how the diffuse and specular components of reflection are obtained.
Then two methods are presented which st »w how the polarization Fresnel ratio can be empirically determined at a pixel.

1 INTRODUCTION

Most object surfaces belong to one of two broad material classes: metals or dielectrics. Metals have relatively low
electrical resistivity and thus are good conductors. By definition, dielectric materials are electrical insulators. The
difference in the conductive properties of metals and dielectrics in turn produces a difference in surface interaction with
light which is electromagnetic radiation . The reflective characteristics of metals and dielectrics can be vastly different,
especially with respect to polarization. It is this difference we will exploit to classify materials based on camera images.

The classification of surfaces as either metal or dielectric has many potentials in machine vision. First there are
certain algorithms that assume particular material types (e.g., see {Klinker et al. 1988]). Secondly, there are numerous
inspection tasks, e.g., printed circuit board inspection, where the objective is to determine/verify the placement of metals
and insulators. It seems natural to directly compute the material composition rather than attempting to infer it